|
--- |
|
license: mit |
|
datasets: |
|
- oscar-corpus/OSCAR-2301 |
|
- allenai/nllb |
|
- Helsinki-NLP/opus-100 |
|
language: |
|
- en |
|
- da |
|
- nl |
|
- de |
|
- is |
|
- 'no' |
|
- sc |
|
- af |
|
- ca |
|
- ro |
|
- gl |
|
- it |
|
- pt |
|
- es |
|
- bg |
|
- mk |
|
- sr |
|
- uk |
|
- ru |
|
- id |
|
- ms |
|
- th |
|
- vi |
|
- mg |
|
- fr |
|
- hu |
|
- el |
|
- cs |
|
- pl |
|
- lt |
|
- lv |
|
- ka |
|
- zh |
|
- ja |
|
- ko |
|
- fi |
|
- et |
|
- gu |
|
- hi |
|
- mr |
|
- ne |
|
- ur |
|
- az |
|
- kk |
|
- ky |
|
- tr |
|
- uz |
|
- ar |
|
- he |
|
- fa |
|
base_model: |
|
- haoranxu/ALMA-13B-Pretrain |
|
--- |
|
|
|
|
|
[X-ALMA](https://arxiv.org/pdf/2410.03115) builds upon [ALMA-R](https://arxiv.org/pdf/2401.08417) by expanding support from 6 to 50 languages. It utilizes a plug-and-play architecture with language-specific modules, complemented by a carefully designed training recipe. This release includes the **X-ALMA pre-trained base model**. |
|
``` |
|
@misc{xu2024xalmaplugplay, |
|
title={X-ALMA: Plug & Play Modules and Adaptive Rejection for Quality Translation at Scale}, |
|
author={Haoran Xu and Kenton Murray and Philipp Koehn and Hieu Hoang and Akiko Eriguchi and Huda Khayrallah}, |
|
year={2024}, |
|
eprint={2410.03115}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL}, |
|
url={https://arxiv.org/abs/2410.03115}, |
|
} |
|
``` |
|
X-ALMA-13B-Pretrain is pre-trained on 50 languages: en,da,nl,de,is,no,sv,af,ca,ro,gl,it,pt,es,bg,mk,sr,uk,ru,id,ms,th,vi,mg,fr,hu,el,cs,pl,lt,lv,ka,zh,ja,ko,fi,et,gu,hi,mr,ne,ur,az,kk,ky,tr,uz,ar,he,fa. |
|
|
|
All X-ALMA checkpoints are released at huggingface: |
|
| Models | Model Link | Description | |
|
|:-------------:|:---------------:|:---------------:| |
|
| X-ALMA | [haoranxu/X-ALMA](https://huggingface.co./haoranxu/X-ALMA)) | X-ALMA model with all its modules | |
|
| X-ALMA-13B-Pretrain | [haoranxu/X-ALMA-13B-Pretrain](https://huggingface.co./haoranxu/X-ALMA-13B-Pretrain) | X-ALMA 13B multilingual pre-trained base model | |
|
| X-ALMA-Group1 | [haoranxu/X-ALMA-13B-Group1](https://huggingface.co./haoranxu/X-ALMA-13B-Group1) | X-ALMA group1 specific module and the merged model | |
|
| X-ALMA-Group2 | [haoranxu/X-ALMA-13B-Group2](https://huggingface.co./haoranxu/X-ALMA-13B-Group2) | X-ALMA group2 specific module and the merged model | |
|
| X-ALMA-Group3 | [haoranxu/X-ALMA-13B-Group3](https://huggingface.co./haoranxu/X-ALMA-13B-Group3) | X-ALMA group3 specific module and the merged model | |
|
| X-ALMA-Group4 | [haoranxu/X-ALMA-13B-Group4](https://huggingface.co./haoranxu/X-ALMA-13B-Group4) | X-ALMA group4 specific module and the merged model | |
|
| X-ALMA-Group5 | [haoranxu/X-ALMA-13B-Group5](https://huggingface.co./haoranxu/X-ALMA-13B-Group5) | X-ALMA group5 specific module and the merged model | |
|
| X-ALMA-Group6 | [haoranxu/X-ALMA-13B-Group6](https://huggingface.co./haoranxu/X-ALMA-13B-Group6) | X-ALMA group6 specific module and the merged model | |
|
| X-ALMA-Group7 | [haoranxu/X-ALMA-13B-Group7](https://huggingface.co./haoranxu/X-ALMA-13B-Group7) | X-ALMA group7 specific module and the merged model | |
|
| X-ALMA-Group8 | [haoranxu/X-ALMA-13B-Group8](https://huggingface.co./haoranxu/X-ALMA-13B-Group8) | X-ALMA group8 specific module and the merged model | |
|
|
|
## A quick start: |
|
There are three ways to load X-ALMA for translation. An example of translating "我爱机器翻译。" into English (X-ALMA should also able to do multilingual open-ended QA). |
|
|
|
**The first way**: loading the merged model where the language-specific module has been merged into the base model **(Recommended)**: |
|
``` |
|
import torch |
|
from transformers import AutoModelForCausalLM |
|
from transformers import AutoTokenizer |
|
from peft import PeftModel |
|
|
|
GROUP2LANG = { |
|
1: ["da", "nl", "de", "is", "no", "sv", "af"], |
|
2: ["ca", "ro", "gl", "it", "pt", "es"], |
|
3: ["bg", "mk", "sr", "uk", "ru"], |
|
4: ["id", "ms", "th", "vi", "mg", "fr"], |
|
5: ["hu", "el", "cs", "pl", "lt", "lv"], |
|
6: ["ka", "zh", "ja", "ko", "fi", "et"], |
|
7: ["gu", "hi", "mr", "ne", "ur"], |
|
8: ["az", "kk", "ky", "tr", "uz", "ar", "he", "fa"], |
|
} |
|
LANG2GROUP = {lang: str(group) for group, langs in GROUP2LANG.items() for lang in langs} |
|
group_id = LANG2GROUP["zh"] |
|
|
|
model = AutoModelForCausalLM.from_pretrained(f"haoranxu/X-ALMA-13B-Group{group_id}", torch_dtype=torch.float16, device_map="auto") |
|
tokenizer = AutoTokenizer.from_pretrained(f"haoranxu/X-ALMA-13B-Group{group_id}", padding_side='left') |
|
|
|
# Add the source sentence into the prompt template |
|
prompt="Translate this from Chinese to English:\nChinese: 我爱机器翻译。\nEnglish:" |
|
|
|
# X-ALMA needs chat template but ALMA and ALMA-R don't need it. |
|
chat_style_prompt = [{"role": "user", "content": prompt}] |
|
prompt = tokenizer.apply_chat_template(chat_style_prompt, tokenize=False, add_generation_prompt=True) |
|
|
|
input_ids = tokenizer(prompt, return_tensors="pt", padding=True, max_length=40, truncation=True).input_ids.cuda() |
|
|
|
# Translation |
|
with torch.no_grad(): |
|
generated_ids = model.generate(input_ids=input_ids, num_beams=5, max_new_tokens=20, do_sample=True, temperature=0.6, top_p=0.9) |
|
outputs = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) |
|
print(outputs) |
|
``` |
|
|
|
**The second way**: loading the base model and language-specific module **(Recommended)**: |
|
``` |
|
model = AutoModelForCausalLM.from_pretrained("haoranxu/X-ALMA-13B-Pretrain", torch_dtype=torch.float16, device_map="auto") |
|
model = PeftModel.from_pretrained(model, f"haoranxu/X-ALMA-13B-Group{group_id}") |
|
tokenizer = AutoTokenizer.from_pretrained(f"haoranxu/X-ALMA-13B-Group{group_id}", padding_side='left') |
|
``` |
|
|
|
**The third way**: loading the base model with all language-specific modules like MoE: (Require large GPU memory) |
|
``` |
|
from modeling_xalma import XALMAForCausalLM |
|
model = XALMAForCausalLM.from_pretrained("haoranxu/X-ALMA", torch_dtype=torch.float16, device_map="auto") |
|
tokenizer = AutoTokenizer.from_pretrained("haoranxu/X-ALMA", padding_side='left') |
|
|
|
# Add `lang="zh"`: specify the language to instruct the model on which group to use for the third loading method during generation. |
|
generated_ids = model.generate(input_ids=input_ids, num_beams=5, max_new_tokens=20, do_sample=True, temperature=0.6, top_p=0.9, lang="zh") |
|
``` |