SentenceTransformer based on sentence-transformers/all-distilroberta-v1
This is a sentence-transformers model finetuned from sentence-transformers/all-distilroberta-v1. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-distilroberta-v1
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("hanwenzhu/all-distilroberta-v1-lr2e-4-bs1024-nneg3-ml-feb04")
# Run inference
sentences = [
'Mathlib.AlgebraicGeometry.Noetherian#22',
'AlgebraicGeometry.of_affine_open_cover',
'pow_lt_pow_right_of_lt_one₀',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 4,232,571 training samples
- Columns:
state_name
andpremise_name
- Approximate statistics based on the first 1000 samples:
state_name premise_name type string string details - min: 11 tokens
- mean: 16.91 tokens
- max: 28 tokens
- min: 3 tokens
- mean: 10.27 tokens
- max: 27 tokens
- Samples:
state_name premise_name Mathlib.Algebra.Group.Subgroup.Pointwise#27
Set.mul_subgroupClosure
Mathlib.Algebra.Group.Subgroup.Pointwise#27
pow_succ
Mathlib.Algebra.Group.Subgroup.Pointwise#27
mul_assoc
- Loss:
loss.MaskedCachedMultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 1,648 evaluation samples
- Columns:
state_name
andpremise_name
- Approximate statistics based on the first 1000 samples:
state_name premise_name type string string details - min: 12 tokens
- mean: 17.34 tokens
- max: 26 tokens
- min: 3 tokens
- mean: 10.9 tokens
- max: 34 tokens
- Samples:
state_name premise_name Mathlib.Algebra.BigOperators.Associated#0
Prime.dvd_or_dvd
Mathlib.Algebra.BigOperators.Associated#0
Multiset.induction_on
Mathlib.Algebra.BigOperators.Associated#0
Multiset.mem_cons_of_mem
- Loss:
loss.MaskedCachedMultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 1024per_device_eval_batch_size
: 64learning_rate
: 0.0002num_train_epochs
: 1.0lr_scheduler_type
: cosinewarmup_ratio
: 0.03bf16
: Truedataloader_num_workers
: 4batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 1024per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 0.0002weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1.0max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.03warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 4dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | loss |
---|---|---|---|
0.0024 | 10 | 6.4677 | - |
0.0048 | 20 | 5.8525 | - |
0.0073 | 30 | 5.4638 | - |
0.0097 | 40 | 5.1916 | - |
0.0102 | 42 | - | 1.8024 |
0.0121 | 50 | 5.0406 | - |
0.0145 | 60 | 4.9618 | - |
0.0169 | 70 | 4.8628 | - |
0.0194 | 80 | 4.8094 | - |
0.0203 | 84 | - | 1.6661 |
0.0218 | 90 | 4.728 | - |
0.0242 | 100 | 4.6682 | - |
0.0266 | 110 | 4.6147 | - |
0.0290 | 120 | 4.6194 | - |
0.0305 | 126 | - | 1.4863 |
0.0314 | 130 | 4.5386 | - |
0.0339 | 140 | 4.4644 | - |
0.0363 | 150 | 4.4456 | - |
0.0387 | 160 | 4.4112 | - |
0.0406 | 168 | - | 1.4766 |
0.0411 | 170 | 4.3334 | - |
0.0435 | 180 | 4.326 | - |
0.0460 | 190 | 4.2364 | - |
0.0484 | 200 | 4.232 | - |
0.0508 | 210 | 4.211 | 1.2885 |
0.0532 | 220 | 4.16 | - |
0.0556 | 230 | 4.1569 | - |
0.0581 | 240 | 4.1202 | - |
0.0605 | 250 | 4.0603 | - |
0.0610 | 252 | - | 1.3337 |
0.0629 | 260 | 4.0629 | - |
0.0653 | 270 | 4.0401 | - |
0.0677 | 280 | 4.0171 | - |
0.0701 | 290 | 4.0034 | - |
0.0711 | 294 | - | 1.2049 |
0.0726 | 300 | 3.9911 | - |
0.0750 | 310 | 3.893 | - |
0.0774 | 320 | 3.8999 | - |
0.0798 | 330 | 3.9395 | - |
0.0813 | 336 | - | 1.2090 |
0.0822 | 340 | 3.9087 | - |
0.0847 | 350 | 3.925 | - |
0.0871 | 360 | 3.8888 | - |
0.0895 | 370 | 3.8282 | - |
0.0914 | 378 | - | 1.2345 |
0.0919 | 380 | 3.8787 | - |
0.0943 | 390 | 3.8517 | - |
0.0968 | 400 | 3.7446 | - |
0.0992 | 410 | 3.7888 | - |
0.1016 | 420 | 3.7833 | 1.2055 |
0.1040 | 430 | 3.7522 | - |
0.1064 | 440 | 3.7601 | - |
0.1089 | 450 | 3.7093 | - |
0.1113 | 460 | 3.713 | - |
0.1118 | 462 | - | 1.2316 |
0.1137 | 470 | 3.6461 | - |
0.1161 | 480 | 3.6153 | - |
0.1185 | 490 | 3.6419 | - |
0.1209 | 500 | 3.5929 | - |
0.1219 | 504 | - | 1.1385 |
0.1234 | 510 | 3.5881 | - |
0.1258 | 520 | 3.6296 | - |
0.1282 | 530 | 3.6302 | - |
0.1306 | 540 | 3.59 | - |
0.1321 | 546 | - | 1.1055 |
0.1330 | 550 | 3.5682 | - |
0.1355 | 560 | 3.5808 | - |
0.1379 | 570 | 3.4821 | - |
0.1403 | 580 | 3.5309 | - |
0.1422 | 588 | - | 1.1142 |
0.1427 | 590 | 3.4714 | - |
0.1451 | 600 | 3.4859 | - |
0.1476 | 610 | 3.4835 | - |
0.1500 | 620 | 3.4335 | - |
0.1524 | 630 | 3.459 | 1.0673 |
0.1548 | 640 | 3.4735 | - |
0.1572 | 650 | 3.3819 | - |
0.1597 | 660 | 3.3618 | - |
0.1621 | 670 | 3.317 | - |
0.1626 | 672 | - | 1.0852 |
0.1645 | 680 | 3.3512 | - |
0.1669 | 690 | 3.3519 | - |
0.1693 | 700 | 3.3672 | - |
0.1717 | 710 | 3.3021 | - |
0.1727 | 714 | - | 1.0624 |
0.1742 | 720 | 3.3557 | - |
0.1766 | 730 | 3.3778 | - |
0.1790 | 740 | 3.2999 | - |
0.1814 | 750 | 3.2691 | - |
0.1829 | 756 | - | 1.0505 |
0.1838 | 760 | 3.268 | - |
0.1863 | 770 | 3.2883 | - |
0.1887 | 780 | 3.2546 | - |
0.1911 | 790 | 3.2313 | - |
0.1930 | 798 | - | 1.0156 |
0.1935 | 800 | 3.2847 | - |
0.1959 | 810 | 3.2852 | - |
0.1984 | 820 | 3.2001 | - |
0.2008 | 830 | 3.2561 | - |
0.2032 | 840 | 3.1764 | 0.9978 |
0.2056 | 850 | 3.1471 | - |
0.2080 | 860 | 3.1506 | - |
0.2104 | 870 | 3.1225 | - |
0.2129 | 880 | 3.2139 | - |
0.2134 | 882 | - | 0.9681 |
0.2153 | 890 | 3.1746 | - |
0.2177 | 900 | 3.0522 | - |
0.2201 | 910 | 3.1581 | - |
0.2225 | 920 | 3.1535 | - |
0.2235 | 924 | - | 0.9900 |
0.2250 | 930 | 3.1659 | - |
0.2274 | 940 | 3.069 | - |
0.2298 | 950 | 3.1406 | - |
0.2322 | 960 | 3.1171 | - |
0.2337 | 966 | - | 0.9881 |
0.2346 | 970 | 3.0983 | - |
0.2371 | 980 | 3.0748 | - |
0.2395 | 990 | 3.0279 | - |
0.2419 | 1000 | 3.0465 | - |
0.2438 | 1008 | - | 0.9158 |
0.2443 | 1010 | 2.9777 | - |
0.2467 | 1020 | 2.9791 | - |
0.2492 | 1030 | 2.9773 | - |
0.2516 | 1040 | 3.0372 | - |
0.2540 | 1050 | 2.998 | 0.9662 |
0.2564 | 1060 | 3.0012 | - |
0.2588 | 1070 | 2.9436 | - |
0.2612 | 1080 | 2.9661 | - |
0.2637 | 1090 | 3.0087 | - |
0.2642 | 1092 | - | 0.9232 |
0.2661 | 1100 | 2.9713 | - |
0.2685 | 1110 | 2.9653 | - |
0.2709 | 1120 | 2.9268 | - |
0.2733 | 1130 | 2.9321 | - |
0.2743 | 1134 | - | 0.9229 |
0.2758 | 1140 | 2.884 | - |
0.2782 | 1150 | 2.9282 | - |
0.2806 | 1160 | 2.9197 | - |
0.2830 | 1170 | 2.8831 | - |
0.2845 | 1176 | - | 0.9419 |
0.2854 | 1180 | 2.8617 | - |
0.2879 | 1190 | 2.8926 | - |
0.2903 | 1200 | 2.8259 | - |
0.2927 | 1210 | 2.7944 | - |
0.2946 | 1218 | - | 0.8967 |
0.2951 | 1220 | 2.7952 | - |
0.2975 | 1230 | 2.8103 | - |
0.3000 | 1240 | 2.7346 | - |
0.3024 | 1250 | 2.7674 | - |
0.3048 | 1260 | 2.7845 | 0.9320 |
0.3072 | 1270 | 2.8123 | - |
0.3096 | 1280 | 2.7938 | - |
0.3120 | 1290 | 2.8232 | - |
0.3145 | 1300 | 2.7676 | - |
0.3149 | 1302 | - | 0.8623 |
0.3169 | 1310 | 2.756 | - |
0.3193 | 1320 | 2.7683 | - |
0.3217 | 1330 | 2.8046 | - |
0.3241 | 1340 | 2.8106 | - |
0.3251 | 1344 | - | 0.8718 |
0.3266 | 1350 | 2.7349 | - |
0.3290 | 1360 | 2.747 | - |
0.3314 | 1370 | 2.7276 | - |
0.3338 | 1380 | 2.764 | - |
0.3353 | 1386 | - | 0.8143 |
0.3362 | 1390 | 2.7233 | - |
0.3387 | 1400 | 2.694 | - |
0.3411 | 1410 | 2.7002 | - |
0.3435 | 1420 | 2.705 | - |
0.3454 | 1428 | - | 0.8237 |
0.3459 | 1430 | 2.6625 | - |
0.3483 | 1440 | 2.6954 | - |
0.3507 | 1450 | 2.6671 | - |
0.3532 | 1460 | 2.6801 | - |
0.3556 | 1470 | 2.6724 | 0.8144 |
0.3580 | 1480 | 2.6525 | - |
0.3604 | 1490 | 2.6905 | - |
0.3628 | 1500 | 2.62 | - |
0.3653 | 1510 | 2.6563 | - |
0.3657 | 1512 | - | 0.8374 |
0.3677 | 1520 | 2.6774 | - |
0.3701 | 1530 | 2.6183 | - |
0.3725 | 1540 | 2.6164 | - |
0.3749 | 1550 | 2.6187 | - |
0.3759 | 1554 | - | 0.8515 |
0.3774 | 1560 | 2.6186 | - |
0.3798 | 1570 | 2.6555 | - |
0.3822 | 1580 | 2.6541 | - |
0.3846 | 1590 | 2.6595 | - |
0.3861 | 1596 | - | 0.8322 |
0.3870 | 1600 | 2.6699 | - |
0.3895 | 1610 | 2.6404 | - |
0.3919 | 1620 | 2.5847 | - |
0.3943 | 1630 | 2.6133 | - |
0.3962 | 1638 | - | 0.8247 |
0.3967 | 1640 | 2.6379 | - |
0.3991 | 1650 | 2.6635 | - |
0.4015 | 1660 | 2.6122 | - |
0.4040 | 1670 | 2.6352 | - |
0.4064 | 1680 | 2.5765 | 0.8084 |
0.4088 | 1690 | 2.58 | - |
0.4112 | 1700 | 2.5415 | - |
0.4136 | 1710 | 2.5199 | - |
0.4161 | 1720 | 2.5341 | - |
0.4165 | 1722 | - | 0.8113 |
0.4185 | 1730 | 2.5443 | - |
0.4209 | 1740 | 2.5558 | - |
0.4233 | 1750 | 2.547 | - |
0.4257 | 1760 | 2.5383 | - |
0.4267 | 1764 | - | 0.7759 |
0.4282 | 1770 | 2.5656 | - |
0.4306 | 1780 | 2.5711 | - |
0.4330 | 1790 | 2.4755 | - |
0.4354 | 1800 | 2.4792 | - |
0.4369 | 1806 | - | 0.7821 |
0.4378 | 1810 | 2.489 | - |
0.4403 | 1820 | 2.4752 | - |
0.4427 | 1830 | 2.4708 | - |
0.4451 | 1840 | 2.5073 | - |
0.4470 | 1848 | - | 0.7817 |
0.4475 | 1850 | 2.4888 | - |
0.4499 | 1860 | 2.4498 | - |
0.4523 | 1870 | 2.4089 | - |
0.4548 | 1880 | 2.4877 | - |
0.4572 | 1890 | 2.4617 | 0.7354 |
0.4596 | 1900 | 2.4715 | - |
0.4620 | 1910 | 2.4175 | - |
0.4644 | 1920 | 2.4554 | - |
0.4669 | 1930 | 2.4406 | - |
0.4673 | 1932 | - | 0.7383 |
0.4693 | 1940 | 2.4692 | - |
0.4717 | 1950 | 2.4418 | - |
0.4741 | 1960 | 2.5003 | - |
0.4765 | 1970 | 2.4467 | - |
0.4775 | 1974 | - | 0.7271 |
0.4790 | 1980 | 2.4256 | - |
0.4814 | 1990 | 2.4249 | - |
0.4838 | 2000 | 2.3878 | - |
0.4862 | 2010 | 2.3596 | - |
0.4877 | 2016 | - | 0.7600 |
0.4886 | 2020 | 2.3905 | - |
0.4910 | 2030 | 2.4118 | - |
0.4935 | 2040 | 2.3785 | - |
0.4959 | 2050 | 2.4141 | - |
0.4978 | 2058 | - | 0.7464 |
0.4983 | 2060 | 2.3821 | - |
0.5007 | 2070 | 2.3513 | - |
0.5031 | 2080 | 2.3928 | - |
0.5056 | 2090 | 2.3406 | - |
0.5080 | 2100 | 2.3967 | 0.7483 |
0.5104 | 2110 | 2.4006 | - |
0.5128 | 2120 | 2.3474 | - |
0.5152 | 2130 | 2.395 | - |
0.5177 | 2140 | 2.3809 | - |
0.5181 | 2142 | - | 0.7415 |
0.5201 | 2150 | 2.3646 | - |
0.5225 | 2160 | 2.3675 | - |
0.5249 | 2170 | 2.3295 | - |
0.5273 | 2180 | 2.3365 | - |
0.5283 | 2184 | - | 0.7332 |
0.5298 | 2190 | 2.3974 | - |
0.5322 | 2200 | 2.2649 | - |
0.5346 | 2210 | 2.3317 | - |
0.5370 | 2220 | 2.3452 | - |
0.5385 | 2226 | - | 0.7313 |
0.5394 | 2230 | 2.3219 | - |
0.5418 | 2240 | 2.3616 | - |
0.5443 | 2250 | 2.3093 | - |
0.5467 | 2260 | 2.2907 | - |
0.5486 | 2268 | - | 0.7111 |
0.5491 | 2270 | 2.3125 | - |
0.5515 | 2280 | 2.3176 | - |
0.5539 | 2290 | 2.3241 | - |
0.5564 | 2300 | 2.3287 | - |
0.5588 | 2310 | 2.2922 | 0.6895 |
0.5612 | 2320 | 2.3044 | - |
0.5636 | 2330 | 2.3215 | - |
0.5660 | 2340 | 2.3486 | - |
0.5685 | 2350 | 2.3294 | - |
0.5689 | 2352 | - | 0.7046 |
0.5709 | 2360 | 2.3204 | - |
0.5733 | 2370 | 2.273 | - |
0.5757 | 2380 | 2.2787 | - |
0.5781 | 2390 | 2.2772 | - |
0.5791 | 2394 | - | 0.6885 |
0.5806 | 2400 | 2.3089 | - |
0.5830 | 2410 | 2.3235 | - |
0.5854 | 2420 | 2.251 | - |
0.5878 | 2430 | 2.2445 | - |
0.5893 | 2436 | - | 0.6755 |
0.5902 | 2440 | 2.2201 | - |
0.5926 | 2450 | 2.2468 | - |
0.5951 | 2460 | 2.2094 | - |
0.5975 | 2470 | 2.2455 | - |
0.5994 | 2478 | - | 0.6602 |
0.5999 | 2480 | 2.2538 | - |
0.6023 | 2490 | 2.2125 | - |
0.6047 | 2500 | 2.2468 | - |
0.6072 | 2510 | 2.2107 | - |
0.6096 | 2520 | 2.2291 | 0.6725 |
0.6120 | 2530 | 2.2051 | - |
0.6144 | 2540 | 2.2408 | - |
0.6168 | 2550 | 2.1987 | - |
0.6193 | 2560 | 2.1743 | - |
0.6197 | 2562 | - | 0.6907 |
0.6217 | 2570 | 2.2191 | - |
0.6241 | 2580 | 2.1297 | - |
0.6265 | 2590 | 2.1588 | - |
0.6289 | 2600 | 2.171 | - |
0.6299 | 2604 | - | 0.6736 |
0.6313 | 2610 | 2.1956 | - |
0.6338 | 2620 | 2.1818 | - |
0.6362 | 2630 | 2.1472 | - |
0.6386 | 2640 | 2.1413 | - |
0.6401 | 2646 | - | 0.6672 |
0.6410 | 2650 | 2.1891 | - |
0.6434 | 2660 | 2.228 | - |
0.6459 | 2670 | 2.1725 | - |
0.6483 | 2680 | 2.1622 | - |
0.6502 | 2688 | - | 0.6465 |
0.6507 | 2690 | 2.1245 | - |
0.6531 | 2700 | 2.1485 | - |
0.6555 | 2710 | 2.1685 | - |
0.6580 | 2720 | 2.1808 | - |
0.6604 | 2730 | 2.1547 | 0.6508 |
0.6628 | 2740 | 2.1459 | - |
0.6652 | 2750 | 2.1755 | - |
0.6676 | 2760 | 2.1741 | - |
0.6701 | 2770 | 2.1441 | - |
0.6705 | 2772 | - | 0.6543 |
0.6725 | 2780 | 2.1351 | - |
0.6749 | 2790 | 2.1795 | - |
0.6773 | 2800 | 2.1234 | - |
0.6797 | 2810 | 2.1839 | - |
0.6807 | 2814 | - | 0.6338 |
0.6821 | 2820 | 2.172 | - |
0.6846 | 2830 | 2.1623 | - |
0.6870 | 2840 | 2.1384 | - |
0.6894 | 2850 | 2.1192 | - |
0.6909 | 2856 | - | 0.6365 |
0.6918 | 2860 | 2.1299 | - |
0.6942 | 2870 | 2.0923 | - |
0.6967 | 2880 | 2.1235 | - |
0.6991 | 2890 | 2.1251 | - |
0.7010 | 2898 | - | 0.6314 |
0.7015 | 2900 | 2.0977 | - |
0.7039 | 2910 | 2.1185 | - |
0.7063 | 2920 | 2.1247 | - |
0.7088 | 2930 | 2.1402 | - |
0.7112 | 2940 | 2.147 | 0.6360 |
0.7136 | 2950 | 2.0964 | - |
0.7160 | 2960 | 2.0909 | - |
0.7184 | 2970 | 2.1207 | - |
0.7209 | 2980 | 2.168 | - |
0.7213 | 2982 | - | 0.6326 |
0.7233 | 2990 | 2.0948 | - |
0.7257 | 3000 | 2.0667 | - |
0.7281 | 3010 | 2.1356 | - |
0.7305 | 3020 | 2.1777 | - |
0.7315 | 3024 | - | 0.6356 |
0.7329 | 3030 | 2.1407 | - |
0.7354 | 3040 | 2.1987 | - |
0.7378 | 3050 | 2.1879 | - |
0.7402 | 3060 | 2.1648 | - |
0.7417 | 3066 | - | 0.6207 |
0.7426 | 3070 | 2.16 | - |
0.7450 | 3080 | 2.106 | - |
0.7475 | 3090 | 2.1453 | - |
0.7499 | 3100 | 2.1011 | - |
0.7518 | 3108 | - | 0.6296 |
0.7523 | 3110 | 2.104 | - |
0.7547 | 3120 | 2.0936 | - |
0.7571 | 3130 | 2.0504 | - |
0.7596 | 3140 | 2.0462 | - |
0.7620 | 3150 | 2.0193 | 0.6334 |
0.7644 | 3160 | 2.0453 | - |
0.7668 | 3170 | 2.0954 | - |
0.7692 | 3180 | 2.1092 | - |
0.7716 | 3190 | 2.1209 | - |
0.7721 | 3192 | - | 0.6383 |
0.7741 | 3200 | 2.1385 | - |
0.7765 | 3210 | 2.0488 | - |
0.7789 | 3220 | 2.0748 | - |
0.7813 | 3230 | 2.0723 | - |
0.7823 | 3234 | - | 0.6196 |
0.7837 | 3240 | 2.0578 | - |
0.7862 | 3250 | 2.0708 | - |
0.7886 | 3260 | 2.086 | - |
0.7910 | 3270 | 2.0504 | - |
0.7925 | 3276 | - | 0.6171 |
0.7934 | 3280 | 2.0338 | - |
0.7958 | 3290 | 2.0754 | - |
0.7983 | 3300 | 2.0353 | - |
0.8007 | 3310 | 2.0709 | - |
0.8026 | 3318 | - | 0.6091 |
0.8031 | 3320 | 2.0502 | - |
0.8055 | 3330 | 2.0541 | - |
0.8079 | 3340 | 2.0509 | - |
0.8104 | 3350 | 1.9828 | - |
0.8128 | 3360 | 2.0352 | 0.6119 |
0.8152 | 3370 | 2.0217 | - |
0.8176 | 3380 | 2.0101 | - |
0.8200 | 3390 | 2.0851 | - |
0.8224 | 3400 | 2.0473 | - |
0.8229 | 3402 | - | 0.6128 |
0.8249 | 3410 | 2.0676 | - |
0.8273 | 3420 | 2.0666 | - |
0.8297 | 3430 | 2.0612 | - |
0.8321 | 3440 | 2.0778 | - |
0.8331 | 3444 | - | 0.6213 |
0.8345 | 3450 | 2.0755 | - |
0.8370 | 3460 | 2.0443 | - |
0.8394 | 3470 | 2.039 | - |
0.8418 | 3480 | 1.9625 | - |
0.8433 | 3486 | - | 0.6093 |
0.8442 | 3490 | 2.0408 | - |
0.8466 | 3500 | 2.0795 | - |
0.8491 | 3510 | 2.0077 | - |
0.8515 | 3520 | 2.0181 | - |
0.8534 | 3528 | - | 0.6073 |
0.8539 | 3530 | 2.0182 | - |
0.8563 | 3540 | 2.0174 | - |
0.8587 | 3550 | 2.0551 | - |
0.8612 | 3560 | 2.0427 | - |
0.8636 | 3570 | 1.9981 | 0.6042 |
0.8660 | 3580 | 2.0657 | - |
0.8684 | 3590 | 2.0465 | - |
0.8708 | 3600 | 2.0011 | - |
0.8732 | 3610 | 2.0421 | - |
0.8737 | 3612 | - | 0.6024 |
0.8757 | 3620 | 1.9901 | - |
0.8781 | 3630 | 1.6599 | - |
0.8805 | 3640 | 1.5043 | - |
0.8829 | 3650 | 1.593 | - |
0.8839 | 3654 | - | 0.5947 |
0.8853 | 3660 | 1.7022 | - |
0.8878 | 3670 | 1.8429 | - |
0.8902 | 3680 | 1.8807 | - |
0.8926 | 3690 | 1.9801 | - |
0.8940 | 3696 | - | 0.6562 |
0.8950 | 3700 | 1.9469 | - |
0.8974 | 3710 | 1.9986 | - |
0.8999 | 3720 | 1.9962 | - |
0.9023 | 3730 | 1.9762 | - |
0.9042 | 3738 | - | 0.7028 |
0.9047 | 3740 | 1.9579 | - |
0.9071 | 3750 | 1.9973 | - |
0.9095 | 3760 | 1.9966 | - |
0.9119 | 3770 | 1.8911 | - |
0.9144 | 3780 | 1.967 | 0.7325 |
0.9168 | 3790 | 1.9749 | - |
0.9192 | 3800 | 2.0358 | - |
0.9216 | 3810 | 1.9572 | - |
0.9240 | 3820 | 1.9778 | - |
0.9245 | 3822 | - | 0.7554 |
0.9265 | 3830 | 1.9152 | - |
0.9289 | 3840 | 1.9637 | - |
0.9313 | 3850 | 1.9514 | - |
0.9337 | 3860 | 1.986 | - |
0.9347 | 3864 | - | 0.7732 |
0.9361 | 3870 | 2.0145 | - |
0.9386 | 3880 | 1.8994 | - |
0.9410 | 3890 | 1.9492 | - |
0.9434 | 3900 | 1.9374 | - |
0.9448 | 3906 | - | 0.7844 |
0.9458 | 3910 | 1.9583 | - |
0.9482 | 3920 | 1.9123 | - |
0.9507 | 3930 | 1.9629 | - |
0.9531 | 3940 | 1.92 | - |
0.9550 | 3948 | - | 0.7910 |
0.9555 | 3950 | 2.0428 | - |
0.9579 | 3960 | 1.9489 | - |
0.9603 | 3970 | 1.9754 | - |
0.9627 | 3980 | 1.9748 | - |
0.9652 | 3990 | 1.8946 | 0.7957 |
0.9676 | 4000 | 1.9238 | - |
0.9700 | 4010 | 1.9004 | - |
0.9724 | 4020 | 1.8867 | - |
0.9748 | 4030 | 1.8482 | - |
0.9753 | 4032 | - | 0.8006 |
0.9773 | 4040 | 1.919 | - |
0.9797 | 4050 | 2.0569 | - |
0.9821 | 4060 | 1.986 | - |
0.9845 | 4070 | 1.9729 | - |
0.9855 | 4074 | - | 0.8030 |
0.9869 | 4080 | 1.8762 | - |
0.9894 | 4090 | 1.9108 | - |
0.9918 | 4100 | 1.9484 | - |
0.9942 | 4110 | 1.9913 | - |
0.9956 | 4116 | - | 0.8033 |
0.9966 | 4120 | 1.8677 | - |
0.9990 | 4130 | 1.963 | - |
Framework Versions
- Python: 3.11.8
- Sentence Transformers: 3.1.1
- Transformers: 4.45.1
- PyTorch: 2.4.0+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.0
- Tokenizers: 0.20.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MaskedCachedMultipleNegativesRankingLoss
@misc{gao2021scaling,
title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
year={2021},
eprint={2101.06983},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
- Downloads last month
- 3
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for hanwenzhu/all-distilroberta-v1-lr2e-4-bs1024-nneg3-ml-feb04
Base model
sentence-transformers/all-distilroberta-v1