Edit model card

image_classification

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2378
  • Accuracy: 0.5875

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 40 2.0656 0.125
No log 2.0 80 2.0558 0.1938
No log 3.0 120 2.0177 0.2375
No log 4.0 160 1.9156 0.3438
No log 5.0 200 1.7849 0.3063
No log 6.0 240 1.6961 0.3187
No log 7.0 280 1.6026 0.3937
No log 8.0 320 1.5455 0.3688
No log 9.0 360 1.4723 0.4562
No log 10.0 400 1.3931 0.5
No log 11.0 440 1.4418 0.4375
No log 12.0 480 1.3306 0.4437
1.5855 13.0 520 1.2437 0.575
1.5855 14.0 560 1.3712 0.4875
1.5855 15.0 600 1.2102 0.55
1.5855 16.0 640 1.3217 0.5188
1.5855 17.0 680 1.3656 0.4938
1.5855 18.0 720 1.3261 0.525
1.5855 19.0 760 1.5611 0.4625
1.5855 20.0 800 1.4503 0.5125

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for hansin91/image_classification

Finetuned
(1693)
this model

Evaluation results