metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: emotion_classification
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.58125
emotion_classification
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 2.0973
- Accuracy: 0.5813
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 3
- total_train_batch_size: 48
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.0283 | 0.97 | 13 | 2.0768 | 0.575 |
0.0243 | 1.95 | 26 | 2.1315 | 0.5437 |
0.0174 | 3.0 | 40 | 2.1721 | 0.5437 |
0.0176 | 3.98 | 53 | 2.1687 | 0.525 |
0.0172 | 4.95 | 66 | 2.0882 | 0.5375 |
0.016 | 6.0 | 80 | 1.9676 | 0.5687 |
0.017 | 6.97 | 93 | 2.1717 | 0.5375 |
0.0169 | 7.95 | 106 | 2.0982 | 0.5375 |
0.0157 | 9.0 | 120 | 2.0893 | 0.5563 |
0.0169 | 9.97 | 133 | 1.7681 | 0.6188 |
0.0179 | 10.95 | 146 | 2.1032 | 0.5437 |
0.0186 | 12.0 | 160 | 2.1116 | 0.55 |
0.0196 | 12.97 | 173 | 2.2203 | 0.5625 |
0.018 | 13.95 | 186 | 2.0634 | 0.575 |
0.0193 | 15.0 | 200 | 2.2562 | 0.5312 |
0.026 | 15.97 | 213 | 2.3150 | 0.5062 |
0.0171 | 16.95 | 226 | 2.0457 | 0.5437 |
0.0194 | 18.0 | 240 | 1.9336 | 0.5938 |
0.0657 | 18.98 | 253 | 2.1706 | 0.5188 |
0.0537 | 19.95 | 266 | 2.0839 | 0.5437 |
0.0566 | 21.0 | 280 | 2.3004 | 0.4813 |
0.074 | 21.98 | 293 | 2.1488 | 0.5375 |
0.0394 | 22.95 | 306 | 2.4144 | 0.475 |
0.0228 | 24.0 | 320 | 2.2085 | 0.55 |
0.0514 | 24.98 | 333 | 2.1443 | 0.5312 |
0.0553 | 25.95 | 346 | 2.3013 | 0.5062 |
0.0436 | 27.0 | 360 | 1.9988 | 0.5813 |
0.1468 | 27.98 | 373 | 2.0166 | 0.5563 |
0.2184 | 28.95 | 386 | 2.4145 | 0.5 |
0.1519 | 29.25 | 390 | 2.2032 | 0.5375 |
Framework versions
- Transformers 4.33.2
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3