|
--- |
|
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct |
|
datasets: |
|
- hansh/hansken_hql |
|
library_name: peft |
|
license: llama3.1 |
|
tags: |
|
- alignment-handbook |
|
- trl |
|
- sft |
|
- generated_from_trainer |
|
model-index: |
|
- name: hansken_human_hql |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# hansken_human_hql |
|
|
|
This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co./meta-llama/Meta-Llama-3.1-8B-Instruct) on the hansh/hansken_hql dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2362 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 8 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 0.4508 | 0.9976 | 102 | 0.4433 | |
|
| 0.302 | 1.9951 | 204 | 0.3140 | |
|
| 0.2692 | 2.9927 | 306 | 0.2616 | |
|
| 0.177 | 4.0 | 409 | 0.2431 | |
|
| 0.1616 | 4.9976 | 511 | 0.2362 | |
|
| 0.1358 | 5.9951 | 613 | 0.2394 | |
|
| 0.1199 | 6.9927 | 715 | 0.2474 | |
|
| 0.1051 | 8.0 | 818 | 0.2625 | |
|
| 0.0945 | 8.9976 | 920 | 0.2797 | |
|
| 0.0843 | 9.9951 | 1022 | 0.2892 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.12.0 |
|
- Transformers 4.44.0 |
|
- Pytorch 2.1.2+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |