hanifnoerr's picture
Update README.md
958890c
|
raw
history blame
3.72 kB
metadata
license: mit
tags:
  - generated_from_trainer
datasets:
  - indonlu
metrics:
  - accuracy
  - f1
model-index:
  - name: Fine-tuned-Indonesian-Sentiment-Classifier
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: indonlu
          type: indonlu
          config: smsa
          split: validation
          args: smsa
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9317460317460318
          - name: F1
            type: f1
            value: 0.9034223843742829
language:
  - id
pipeline_tag: text-classification
widget:
  - text: Kalo kamu WFH emang kerja?
  - text: buku ini kurang bagus isinya

Fine-tuned-Indonesian-Sentiment-Classifier

This model is a fine-tuned version of indobenchmark/indobert-base-p1 on the IndoNLU's SmSA dataset. It achieves the following results on the evaluation dataset:

  • Loss: 0.3233
  • Accuracy: 0.9317
  • F1: 0.9034

And the results of the test dataset:

  • Accuracy: 0.928
  • F1 macro: 0.9113470780757361
  • F1 micro: 0.928
  • F1 weighted: 0.9261959965604815

Model description

This model can be used to determine the sentiment of a text with three possible outputs [positive, negative, or neutral]

How to use

from transformers import AutoTokenizer, AutoModelForSequenceClassification

Pre-trained = "hanifnoerr/Fine-tuned-Indonesian-Sentiment-Classifier"
tokenizer = AutoTokenizer.from_pretrained(Pre-trained)
model = AutoModelForSequenceClassification.from_pretrained(Pre-trained)

make classification

pretrained_name = "hanifnoerr/Fine-tuned-Indonesian-Sentiment-Classifier"
sentimen = pipeline(tokenizer=pretrained_name, model=pretrained_name)

kalimat = "buku ini jelek sekali"
sentimen(kalimat)

output: [{'label': 'negative', 'score': 0.9996247291564941}]

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.08 1.0 688 0.3532 0.9310 0.9053
0.0523 2.0 1376 0.3233 0.9317 0.9034
0.045 3.0 2064 0.3949 0.9286 0.8995
0.0252 4.0 2752 0.4662 0.9310 0.9049
0.0149 5.0 3440 0.6251 0.9246 0.8899
0.0091 6.0 4128 0.6148 0.9254 0.8928
0.0111 7.0 4816 0.6259 0.9222 0.8902
0.0106 8.0 5504 0.6123 0.9238 0.8882
0.0092 9.0 6192 0.6353 0.9230 0.8928
0.0085 10.0 6880 0.6733 0.9254 0.8989
0.0062 11.0 7568 0.6666 0.9302 0.9027
0.0036 12.0 8256 0.7578 0.9230 0.8962
0.0055 13.0 8944 0.7378 0.9270 0.8947
0.0023 14.0 9632 0.7758 0.9230 0.8978
0.0009 15.0 10320 0.7051 0.9278 0.9006
0.0033 16.0 11008 0.7442 0.9214 0.8902
0.0 17.0 11696 0.7513 0.9254 0.8974
0.0 18.0 12384 0.7554 0.9270 0.8999

Although trained with 18 epochs, this model uses the best weight (Epoch 2)

Framework versions

  • Transformers 4.27.4
  • Pytorch 2.0.0+cu118
  • Datasets 2.11.0
  • Tokenizers 0.13.3