|
--- |
|
library_name: peft |
|
base_model: mistralai/Mistral-7B-v0.1 |
|
tags: |
|
- axolotl |
|
--- |
|
|
|
### Model Description |
|
|
|
A model that can generate [Honeycomb Queries](https://www.honeycomb.io/blog/introducing-query-assistant). |
|
|
|
_fine-tuned by [Hamel Husain](https://hamel.dev)_ |
|
|
|
## How to Get Started with the Model |
|
|
|
Make sure you install all dependencies |
|
|
|
```bash |
|
pip install transformers==transformers==4.36.2 datasets==2.15.0 peft==0.6.0 accelerate==0.24.1 bitsandbytes==0.41.3.post2 safetensors==0.4.1 scipy==1.11.4 sentencepiece==0.1.99 protobuf==4.23.4 --upgrade |
|
``` |
|
|
|
Next, load the dependencies. |
|
|
|
```python |
|
from peft import AutoPeftModelForCausalLM |
|
from transformers import AutoTokenizer |
|
model_id='hamel/hc-mistral-qlora-6' |
|
model = AutoPeftModelForCausalLM.from_pretrained(model_id).cuda() |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
tokenizer.pad_token = tokenizer.eos_token |
|
``` |
|
|
|
Next, define a function that can help you with the prompt (alpaca style). **It is important that you follow this prompt exactly, because this is how the model was trained.** |
|
|
|
```python |
|
def prompt(nlq, cols): |
|
return f"""[INST] <<SYS>> |
|
Honeycomb AI suggests queries based on user input and candidate columns. |
|
<</SYS>> |
|
|
|
User Input: {nlq} |
|
|
|
Candidate Columns: {cols} |
|
[/INST] |
|
""" |
|
|
|
def prompt_tok(nlq, cols): |
|
_p = prompt(nlq, cols) |
|
input_ids = tokenizer(_p, return_tensors="pt", truncation=True).input_ids.cuda() |
|
out_ids = model.generate(input_ids=input_ids, max_new_tokens=5000, |
|
do_sample=False) |
|
return tokenizer.batch_decode(out_ids.detach().cpu().numpy(), |
|
skip_special_tokens=True)[0][len(_p):] |
|
``` |
|
|
|
Next, make predictions |
|
|
|
```python |
|
nlq = "Exception count by exception and caller" |
|
cols = ['error', 'exception.message', 'exception.type', 'exception.stacktrace', 'SampleRate', 'name', 'db.user', 'type', 'duration_ms', 'db.name', 'service.name', 'http.method', 'db.system', 'status_code', 'db.operation', 'library.name', 'process.pid', 'net.transport', 'messaging.system', 'rpc.system', 'http.target', 'db.statement', 'library.version', 'status_message', 'parent_name', 'aws.region', 'process.command', 'rpc.method', 'span.kind', 'serializer.name', 'net.peer.name', 'rpc.service', 'http.scheme', 'process.runtime.name', 'serializer.format', 'serializer.renderer', 'net.peer.port', 'process.runtime.version', 'http.status_code', 'telemetry.sdk.language', 'trace.parent_id', 'process.runtime.description', 'span.num_events', 'messaging.destination', 'net.peer.ip', 'trace.trace_id', 'telemetry.instrumentation_library', 'trace.span_id', 'span.num_links', 'meta.signal_type', 'http.route'] |
|
|
|
out = prompt_tok(nlq, cols) |
|
print(out) |
|
``` |
|
|
|
## Training Details |
|
|
|
See [this wandb run](https://wandb.ai/hamelsmu/hc-axolotl-mistral/runs/et2e62s4/overview?workspace=user-hamelsmu) |
|
|
|
### Training Data |
|
|
|
~90k synthetically generated honeycomb queries. This data is located in [alpaca_synth_queries.jsonl](training_data/alpaca_synth_queries.jsonl). |
|
|
|
### Training Procedure |
|
|
|
Used [axolotl](https://github.com/OpenAccess-AI-Collective/axolotl/tree/main), see [this config](configs/axolotl_config.yml). |
|
|
|
|