metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- clinc_oos
metrics:
- accuracy
model-index:
- name: distilbert-base-uncased-distilled-clinc
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: clinc_oos
type: clinc_oos
config: plus
split: train
args: plus
metrics:
- name: Accuracy
type: accuracy
value: 0.9448387096774193
distilbert-base-uncased-distilled-clinc
This model is a fine-tuned version of distilbert-base-uncased on the clinc_oos dataset. It achieves the following results on the evaluation set:
- Loss: 0.1894
- Accuracy: 0.9448
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 48
- eval_batch_size: 48
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.6133 | 1.0 | 318 | 1.0679 | 0.7290 |
0.8231 | 2.0 | 636 | 0.5164 | 0.8652 |
0.4289 | 3.0 | 954 | 0.3019 | 0.9168 |
0.2722 | 4.0 | 1272 | 0.2336 | 0.9335 |
0.214 | 5.0 | 1590 | 0.2117 | 0.94 |
0.1914 | 6.0 | 1908 | 0.2007 | 0.9445 |
0.1785 | 7.0 | 2226 | 0.1947 | 0.9435 |
0.1716 | 8.0 | 2544 | 0.1919 | 0.9468 |
0.1674 | 9.0 | 2862 | 0.1901 | 0.9452 |
0.1659 | 10.0 | 3180 | 0.1894 | 0.9448 |
Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2