metadata
base_model: openai/clip-vit-base-patch32
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: ktp-kk-crop
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: validation
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.967032967032967
ktp-kk-crop
This model is a fine-tuned version of openai/clip-vit-base-patch32 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.1497
- Accuracy: 0.9670
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 25
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.9655 | 7 | 0.6506 | 0.5824 |
No log | 1.9310 | 14 | 0.3689 | 0.8352 |
0.5439 | 2.8966 | 21 | 0.1940 | 0.9341 |
0.5439 | 4.0 | 29 | 0.1185 | 0.9780 |
0.0961 | 4.9655 | 36 | 0.1345 | 0.9780 |
0.0961 | 5.9310 | 43 | 0.0828 | 0.9670 |
0.114 | 6.8966 | 50 | 0.3337 | 0.9451 |
0.114 | 8.0 | 58 | 0.1176 | 0.9670 |
0.0106 | 8.9655 | 65 | 0.1484 | 0.9670 |
0.0106 | 9.9310 | 72 | 0.0991 | 0.9780 |
0.0609 | 10.8966 | 79 | 0.2071 | 0.9670 |
0.0609 | 12.0 | 87 | 0.2575 | 0.9341 |
0.0112 | 12.9655 | 94 | 0.1714 | 0.9451 |
0.0112 | 13.9310 | 101 | 0.1918 | 0.9451 |
0.0147 | 14.8966 | 108 | 0.1829 | 0.9670 |
0.0147 | 16.0 | 116 | 0.3227 | 0.9341 |
0.0025 | 16.9655 | 123 | 0.1287 | 0.9780 |
0.0025 | 17.9310 | 130 | 0.1364 | 0.9780 |
0.0 | 18.8966 | 137 | 0.1446 | 0.9670 |
0.0 | 20.0 | 145 | 0.1487 | 0.9670 |
0.0 | 20.9655 | 152 | 0.1499 | 0.9670 |
0.0 | 21.9310 | 159 | 0.1501 | 0.9670 |
0.0 | 22.8966 | 166 | 0.1498 | 0.9670 |
0.0 | 24.0 | 174 | 0.1497 | 0.9670 |
0.0 | 24.1379 | 175 | 0.1497 | 0.9670 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.1.2
- Datasets 2.19.2
- Tokenizers 0.19.1