ktp-crop-clip

This model is a fine-tuned version of openai/clip-vit-base-patch32 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1223
  • Accuracy: 0.9865

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.96 6 0.8954 0.5270
0.7112 1.92 12 0.6729 0.5405
0.7112 2.88 18 0.6407 0.7297
0.4413 4.0 25 0.1279 0.9459
0.0935 4.96 31 0.1436 0.9730
0.0935 5.92 37 0.0021 1.0
0.0697 6.88 43 0.2862 0.9459
0.161 8.0 50 0.0843 0.9595
0.161 8.96 56 0.2255 0.9459
0.0061 9.92 62 0.4678 0.9054
0.0061 10.88 68 0.3299 0.9189
0.0309 12.0 75 0.5189 0.9189
0.0025 12.96 81 0.0850 0.9865
0.0025 13.92 87 0.0720 0.9865
0.0042 14.88 93 0.0745 0.9865
0.0002 16.0 100 0.0869 0.9865
0.0002 16.96 106 0.0895 0.9865
0.0001 17.92 112 0.1127 0.9865
0.0001 18.88 118 0.1219 0.9865
0.0 19.2 120 0.1223 0.9865

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.1.2
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
11
Safetensors
Model size
87.5M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for habibi26/ktp-crop-clip

Finetuned
(56)
this model

Evaluation results