TinyLlama/TinyLlama-1.1B-intermediate-step-955k-token-2T finetuned using dolly dataset.
Training took 1 hour on an 'ml.g5.xlarge' instance.
hyperparameters ={
'num_train_epochs': 3, # number of training epochs
'per_device_train_batch_size': 6, # batch size for training
'gradient_accumulation_steps': 2, # Number of updates steps to accumulate
'gradient_checkpointing': True, # save memory but slower backward pass
'bf16': True, # use bfloat16 precision
'tf32': True, # use tf32 precision
'learning_rate': 2e-4, # learning rate
'max_grad_norm': 0.3, # Maximum norm (for gradient clipping)
'warmup_ratio': 0.03, # warmup ratio
"lr_scheduler_type":"constant", # learning rate scheduler
'save_strategy': "epoch", # save strategy for checkpoints
"logging_steps": 10, # log every x steps
'merge_adapters': True, # wether to merge LoRA into the model (needs more memory)
'use_flash_attn': True, # Whether to use Flash Attention
}
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 34.04 |
AI2 Reasoning Challenge (25-Shot) | 30.55 |
HellaSwag (10-Shot) | 53.70 |
MMLU (5-Shot) | 26.07 |
TruthfulQA (0-shot) | 35.85 |
Winogrande (5-shot) | 58.09 |
GSM8k (5-shot) | 0.00 |
- Downloads last month
- 147
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for habanoz/TinyLlama-1.1B-2T-lr-2e-4-3ep-dolly-15k-instruct-v1
Dataset used to train habanoz/TinyLlama-1.1B-2T-lr-2e-4-3ep-dolly-15k-instruct-v1
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard30.550
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard53.700
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard26.070
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard35.850
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard58.090
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard0.000