RoBERTa-ext-large-lora-updated-chinese-finetuned-ner

This model is a fine-tuned version of gyr66/RoBERTa-ext-large-chinese-finetuned-ner on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9586
  • Precision: 0.7016
  • Recall: 0.7518
  • F1: 0.7258
  • Accuracy: 0.9154

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0034 1.0 252 1.0787 0.6753 0.7523 0.7117 0.9121
0.0032 2.0 504 1.0376 0.6830 0.7490 0.7145 0.9141
0.0018 3.0 756 1.0547 0.6731 0.7573 0.7127 0.9126
0.0032 4.0 1008 1.0262 0.6829 0.7384 0.7096 0.9126
0.0027 5.0 1260 0.9613 0.6898 0.7445 0.7161 0.9118
0.0027 6.0 1512 0.9481 0.6780 0.7550 0.7145 0.9120
0.0019 7.0 1764 0.9328 0.6917 0.7513 0.7203 0.9150
0.0008 8.0 2016 0.9570 0.6976 0.7520 0.7238 0.9143
0.0005 9.0 2268 0.9586 0.7016 0.7518 0.7258 0.9154
0.0003 10.0 2520 0.9565 0.6945 0.7520 0.7221 0.9151

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .

Model tree for gyr66/RoBERTa-ext-large-lora-updated-chinese-finetuned-ner

Finetuned
(2)
this model