RoBERTa-ext-large-crf-chinese-finetuned-ner

This model is a fine-tuned version of gyr66/RoBERTa-ext-large-chinese-finetuned-ner on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5907
  • Precision: 0.7278
  • Recall: 0.75
  • F1: 0.7387
  • Accuracy: 0.9629

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0061 1.0 503 0.6739 0.6747 0.7457 0.7084 0.9608
0.0078 2.0 1006 0.6343 0.7083 0.7518 0.7294 0.9622
0.0072 3.0 1509 0.6237 0.6867 0.7621 0.7224 0.9607
0.0052 4.0 2012 0.5929 0.7136 0.7616 0.7368 0.9635
0.0031 5.0 2515 0.5907 0.7278 0.75 0.7387 0.9629
0.0014 6.0 3018 0.6080 0.7172 0.7558 0.7360 0.9636
0.001 7.0 3521 0.6179 0.7198 0.7586 0.7387 0.9637
0.0005 8.0 4024 0.6208 0.7211 0.7518 0.7361 0.9632
0.0004 9.0 4527 0.6169 0.7271 0.7487 0.7378 0.9636
0.0002 10.0 5030 0.6202 0.7266 0.7495 0.7379 0.9636

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
75
Safetensors
Model size
325M params
Tensor type
F32
Β·
Inference Examples
Inference API (serverless) does not yet support model repos that contain custom code.

Model tree for gyr66/RoBERTa-ext-large-crf-chinese-finetuned-ner-v2

Finetuned
(2)
this model

Dataset used to train gyr66/RoBERTa-ext-large-crf-chinese-finetuned-ner-v2

Space using gyr66/RoBERTa-ext-large-crf-chinese-finetuned-ner-v2 1