gweltou's picture
Training in progress, step 1000
a61eb9f verified
metadata
language:
  - br
license: apache-2.0
tags:
  - generated_from_trainer
base_model: facebook/wav2vec2-xls-r-300m
datasets:
  - mozilla-foundation/common_voice_15_0
metrics:
  - wer
model-index:
  - name: wav2vec2-xls-r-300m-breton
    results: []

wav2vec2-xls-r-300m-breton

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the mozilla-foundation/common_voice_15_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9939
  • Wer: 0.4680
  • Cer: 0.1711

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.08
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
10.4347 2.56 250 3.7906 1.0 1.0
3.2144 5.13 500 3.0622 1.0 1.0
2.6193 7.69 750 1.6063 0.9122 0.4042
1.3658 10.26 1000 1.0917 0.7061 0.2474
0.9614 12.82 1250 0.9805 0.6384 0.2245
0.7915 15.38 1500 0.9340 0.5989 0.2124
0.6728 17.95 1750 0.9135 0.5735 0.2016
0.5889 20.51 2000 0.9381 0.5443 0.1944
0.5374 23.08 2250 0.9517 0.5372 0.1918
0.4972 25.64 2500 0.9171 0.5134 0.1828
0.4537 28.21 2750 0.9457 0.5043 0.1804
0.4217 30.77 3000 0.9479 0.4957 0.1789
0.4082 33.33 3250 0.9400 0.4906 0.1762
0.4005 35.9 3500 0.9710 0.4881 0.1770
0.3702 38.46 3750 0.9922 0.4792 0.1757
0.3473 41.03 4000 0.9724 0.4760 0.1734
0.3405 43.59 4250 0.9860 0.4726 0.1722
0.325 46.15 4500 0.9888 0.4679 0.1705
0.3193 48.72 4750 0.9939 0.4680 0.1711

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.0
  • Tokenizers 0.15.0