gweltou's picture
Training in progress, step 1000
61f2f82 verified
|
raw
history blame
4.42 kB
metadata
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
  - generated_from_trainer
datasets:
  - common_voice_15_0
metrics:
  - wer
model-index:
  - name: wav2vec2-xls-r-300m-br
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_15_0
          type: common_voice_15_0
          config: br
          split: None
          args: br
        metrics:
          - name: Wer
            type: wer
            value: 50.08524001794527

wav2vec2-xls-r-300m-br

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice_15_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8404
  • Wer: 50.0852
  • Cer: 17.4519

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 300
  • num_epochs: 40
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Cer Validation Loss Wer
6.6871 1.09 500 100.0 3.2774 100.0
3.0612 2.18 1000 99.9339 2.7879 99.9910
1.7934 3.27 1500 29.4362 1.1762 80.5922
1.0914 4.36 2000 25.0591 0.9210 70.7941
0.8895 5.45 2500 23.6321 0.8364 67.1243
0.7831 6.54 3000 22.4169 0.7813 63.9480
0.697 7.63 3500 21.4625 0.7820 61.8214
0.6474 8.71 4000 20.7367 0.7471 59.4437
0.5969 9.8 4500 20.0072 0.7255 57.8914
0.5677 10.89 5000 20.0563 0.7440 57.5774
0.5286 11.98 5500 19.7483 0.7622 56.2494
0.5054 13.07 6000 19.1510 0.7318 55.1548
0.4831 14.16 6500 19.2096 0.7731 54.6882
0.4606 15.25 7000 19.0282 0.7457 54.4459
0.4432 16.34 7500 18.9923 0.7638 54.1319
0.4116 17.43 8000 18.6880 0.7576 53.3692
0.4099 18.52 8500 18.6653 0.7944 53.1359
0.3991 19.61 9000 18.7258 0.8229 52.9296
0.3796 20.7 9500 18.4555 0.8106 52.3194
0.3715 21.79 10000 18.1078 0.7611 51.8798
0.359 22.88 10500 18.4139 0.7921 52.2207
0.3384 23.97 11000 18.0624 0.8022 51.4850
0.3367 25.05 11500 0.7921 51.5209 18.0322
0.3295 26.14 12000 0.8354 51.4491 17.9811
0.3183 27.23 12500 0.8171 51.0991 17.8488
0.3135 28.32 13000 0.8094 50.9915 17.7354
0.309 29.41 13500 0.8632 50.8659 17.7978
0.2922 30.5 14000 0.8268 50.7672 17.6636
0.2987 31.59 14500 0.8108 50.2557 17.5918
0.2914 32.68 15000 0.8237 50.0224 17.4708
0.2893 33.77 15500 0.8450 50.1211 17.3877
0.2853 34.86 16000 0.8354 50.4800 17.5464
0.2791 35.95 16500 0.8424 50.1929 17.5257
0.2732 37.04 17000 0.8390 50.2826 17.5653
0.2691 38.13 17500 0.8420 50.1122 17.4671
0.2702 39.22 18000 0.8404 50.0852 17.4519

Framework versions

  • Transformers 4.39.1
  • Pytorch 2.0.1+cu117
  • Datasets 2.18.0
  • Tokenizers 0.15.2