gweltou's picture
Model save
3c01bec verified
|
raw
history blame
3.12 kB
metadata
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
  - generated_from_trainer
datasets:
  - common_voice_15_0
metrics:
  - wer
model-index:
  - name: wav2vec2-xls-r-300m-br
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_15_0
          type: common_voice_15_0
          config: br
          split: None
          args: br
        metrics:
          - name: Wer
            type: wer
            value: 49.79811574697174

wav2vec2-xls-r-300m-br

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice_15_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8887
  • Wer: 49.7981
  • Cer: 17.3877

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 40
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
5.1153 2.18 1000 2.8854 100.0 100.0
1.4117 4.36 2000 0.9161 71.2786 25.3180
0.7888 6.54 3000 0.7753 62.7456 22.0767
0.6316 8.71 4000 0.7550 58.1786 20.5383
0.5434 10.89 5000 0.7508 56.5096 20.1168
0.4672 13.07 6000 0.7844 54.9125 19.3835
0.4237 15.25 7000 0.7786 53.2705 18.5765
0.3899 17.43 8000 0.8050 53.0552 18.6105
0.3607 19.61 9000 0.8280 51.9874 18.3024
0.3355 21.79 10000 0.7967 51.5388 17.9811
0.3098 23.97 11000 0.8296 51.2876 17.9547
0.2937 26.14 12000 0.8544 50.9915 17.7827
0.2793 28.32 13000 0.8909 51.5478 18.1286
0.2641 30.5 14000 0.8740 50.4800 17.6561
0.2552 32.68 15000 0.8832 49.9776 17.4463
0.2467 34.86 16000 0.8753 50.3096 17.4765
0.2378 37.04 17000 0.8895 49.8789 17.3952
0.2337 39.22 18000 0.8887 49.7981 17.3877

Framework versions

  • Transformers 4.39.1
  • Pytorch 2.0.1+cu117
  • Datasets 2.18.0
  • Tokenizers 0.15.2