tiny-gpt2-br / README.md
gweltou's picture
Model save
9169d68 verified
|
raw
history blame
3.77 kB
metadata
license: apache-2.0
base_model: distilbert/distilgpt2
tags:
  - generated_from_trainer
model-index:
  - name: tiny-gpt2-br
    results: []

tiny-gpt2-br

This model is a fine-tuned version of distilbert/distilgpt2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 3.2128

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0007
  • train_batch_size: 32
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss
5.8959 0.1 1000 4.8993
4.6543 0.2 2000 4.4073
4.329 0.31 3000 4.1635
4.1446 0.41 4000 4.0202
4.0133 0.51 5000 3.9119
3.9236 0.61 6000 3.8271
3.8622 0.72 7000 3.7583
3.7928 0.82 8000 3.7028
3.7379 0.92 9000 3.6607
3.672 1.02 10000 3.6198
3.5527 1.12 11000 3.5873
3.5428 1.23 12000 3.5617
3.514 1.33 13000 3.5328
3.4959 1.43 14000 3.4995
3.4762 1.53 15000 3.4816
3.4621 1.63 16000 3.4536
3.4392 1.74 17000 3.4368
3.4149 1.84 18000 3.4150
3.4006 1.94 19000 3.3950
3.3313 2.04 20000 3.3951
3.228 2.15 21000 3.3820
3.223 2.25 22000 3.3694
3.2234 2.35 23000 3.3470
3.215 2.45 24000 3.3350
3.2037 2.55 25000 3.3257
3.2265 2.66 26000 3.3122
3.2012 2.76 27000 3.2943
3.1827 2.86 28000 3.2816
3.1801 2.96 29000 3.2706
3.0519 3.06 30000 3.2998
3.0003 3.17 31000 3.2847
3.0091 3.27 32000 3.2764
3.0007 3.37 33000 3.2682
3.0013 3.47 34000 3.2586
2.9951 3.58 35000 3.2452
2.9943 3.68 36000 3.2452
2.9941 3.78 37000 3.2311
2.9839 3.88 38000 3.2174
2.9861 3.98 39000 3.2149
2.8311 4.09 40000 3.2509
2.8113 4.19 41000 3.2432
2.8074 4.29 42000 3.2450
2.8123 4.39 43000 3.2359
2.8086 4.5 44000 3.2245
2.8028 4.6 45000 3.2261
2.8046 4.7 46000 3.2204
2.7978 4.8 47000 3.2148
2.7982 4.9 48000 3.2128

Framework versions

  • Transformers 4.39.1
  • Pytorch 2.0.1+cu117
  • Datasets 2.18.0
  • Tokenizers 0.15.2