Could you give me a simple example?
Which model was this trained with and how did I load these parameters. I tried "diffusers. StableDiffusionPipeline. from_ckpt ("safetensors_path")", "diffusers. StableDiffusionPipeline. from_pretrained ()" have failed
Which model was this trained with and how did I load these parameters. I tried "diffusers. StableDiffusionPipeline. from_ckpt ("safetensors_path")", "diffusers. StableDiffusionPipeline. from_pretrained ()" have failed
1.download https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/convert_from_ckpt.py then push it in file colab
2.use script:
!mkdir converted
!python convert_original_stable_diffusion_to_diffusers.py --checkpoint_path checkpoint_path --from_safetensors --dump_path converted
where checkpoint_path is the path you place the check point file like "Counterfeit-V3.0_fp32.safetensors"
3.use the "converted":
scheduler = EulerDiscreteScheduler.from_pretrained("converted", subfolder="scheduler")
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16).to("cuda")
pipe = StableDiffusionControlNetPipeline.from_pretrained("converted",scheduler=scheduler, controlnet=controlnet, safety_checker=None, torch_dtype=torch.float16)
thank you so much
But I ran into some problems
Traceback (most recent call last):
File "/home/aihao/miniconda3/envs/torch_stable/lib/python3.11/site-packages/transformers/modeling_utils.py", line 463, in load_state_dict
return torch.load(checkpoint_file, map_location="cpu")
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/aihao/miniconda3/envs/torch_stable/lib/python3.11/site-packages/torch/serialization.py", line 797, in load
with _open_zipfile_reader(opened_file) as opened_zipfile:
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/aihao/miniconda3/envs/torch_stable/lib/python3.11/site-packages/torch/serialization.py", line 283, in __init__
super().__init__(torch._C.PyTorchFileReader(name_or_buffer))
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
RuntimeError: PytorchStreamReader failed reading zip archive: failed finding central directory
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/home/aihao/miniconda3/envs/torch_stable/lib/python3.11/site-packages/transformers/modeling_utils.py", line 467, in load_state_dict
if f.read(7) == "version":
^^^^^^^^^
File "<frozen codecs>", line 322, in decode
UnicodeDecodeError: 'utf-8' codec can't decode byte 0x80 in position 64: invalid start byte
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "convert_original_stable_diffusion_to_diffusers.py", line 138, in <module>
pipe = download_from_original_stable_diffusion_ckpt(
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/aihao/miniconda3/envs/torch_stable/lib/python3.11/site-packages/diffusers/pipelines/stable_diffusion/convert_from_ckpt.py", line 1440, in download_from_original_stable_diffusion_ckpt
safety_checker = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker")
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/aihao/miniconda3/envs/torch_stable/lib/python3.11/site-packages/transformers/modeling_utils.py", line 2604, in from_pretrained
state_dict = load_state_dict(resolved_archive_file)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/aihao/miniconda3/envs/torch_stable/lib/python3.11/site-packages/transformers/modeling_utils.py", line 479, in load_state_dict
raise OSError(
OSError: Unable to load weights from pytorch checkpoint file for '/home/aihao/.cache/huggingface/hub/models--CompVis--stable-diffusion-safety-checker/snapshots/cb41f3a270d63d454d385fc2e4f571c487c253c5/pytorch_model.bin' at '/home/aihao/.cache/huggingface/hub/models--CompVis--stable-diffusion-safety-checker/snapshots/cb41f3a270d63d454d385fc2e4f571c487c253c5/pytorch_model.bin'. If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True.
can you help me analyze it
Now it works successfully. I've modified the convert script so that the load_safety_checker parameter for download_from_original_stable_diffusion_ckpt is false.But the image generated by the reuse method is garbled.
Which model was this trained with and how did I load these parameters. I tried "diffusers. StableDiffusionPipeline. from_ckpt ("safetensors_path")", "diffusers. StableDiffusionPipeline. from_pretrained ()" have failed
1.download https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/convert_from_ckpt.py then push it in file colab
2.use script:
!mkdir converted
!python convert_original_stable_diffusion_to_diffusers.py --checkpoint_path checkpoint_path --from_safetensors --dump_path converted
where checkpoint_path is the path you place the check point file like "Counterfeit-V3.0_fp32.safetensors"
3.use the "converted":
scheduler = EulerDiscreteScheduler.from_pretrained("converted", subfolder="scheduler")controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16).to("cuda")
pipe = StableDiffusionControlNetPipeline.from_pretrained("converted",scheduler=scheduler, controlnet=controlnet, safety_checker=None, torch_dtype=torch.float16)