metadata
language:
- it
license: apache-2.0
tags:
- italian
- sequence-to-sequence
- style-transfer
- formality-style-transfer
datasets:
- yahoo/xformal_it
widget:
- text: maronn qualcuno mi spieg' CHECCOSA SUCCEDE?!?!
- text: wellaaaaaaa, ma fraté sei proprio troppo simpatiko, grazieeee!!
- text: nn capisco xke tt i ragazzi lo fanno
- text: IT5 è SUPERMEGA BRAVISSIMO a capire tt il vernacolo italiano!!!
metrics:
- rouge
- bertscore
model-index:
- name: mt5-base-informal-to-formal
results:
- task:
type: formality-style-transfer
name: Informal-to-formal Style Transfer
dataset:
type: xformal_it
name: XFORMAL (Italian Subset)
metrics:
- type: rouge1
value: 0.661
name: Avg. Test Rouge1
- type: rouge2
value: 0.471
name: Avg. Test Rouge2
- type: rougeL
value: 0.642
name: Avg. Test RougeL
- type: bertscore
value: 0.712
name: Avg. Test BERTScore
args:
- model_type: dbmdz/bert-base-italian-xxl-uncased
- lang: it
- num_layers: 10
- rescale_with_baseline: true
- baseline_path: bertscore_baseline_ita.tsv
co2_eq_emissions:
emissions: 40g
source: Google Cloud Platform Carbon Footprint
training_type: fine-tuning
geographical_location: Eemshaven, Netherlands, Europe
hardware_used: 1 TPU v3-8 VM
mT5 Base for Informal-to-formal Style Transfer 🧐
This repository contains the checkpoint for the mT5 Base model fine-tuned on Informal-to-formal style transfer on the Italian subset of the XFORMAL dataset as part of the experiments of the paper IT5: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation by Gabriele Sarti and Malvina Nissim.
A comprehensive overview of other released materials is provided in the gsarti/it5 repository. Refer to the paper for additional details concerning the reported scores and the evaluation approach.
Using the model
Model checkpoints are available for usage in Tensorflow, Pytorch and JAX. They can be used directly with pipelines as:
from transformers import pipelines
i2f = pipeline("text2text-generation", model='it5/mt5-base-informal-to-formal')
i2f("nn capisco xke tt i ragazzi lo fanno")
>>> [{"generated_text": "non comprendo perché tutti i ragazzi agiscono così"}]
or loaded using autoclasses:
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("it5/mt5-base-informal-to-formal")
model = AutoModelForSeq2SeqLM.from_pretrained("it5/mt5-base-informal-to-formal")
If you use this model in your research, please cite our work as:
@article{sarti-nissim-2022-it5,
title={{IT5}: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation},
author={Sarti, Gabriele and Nissim, Malvina},
journal={ArXiv preprint 2203.03759},
url={https://arxiv.org/abs/2203.03759},
year={2022},
month={mar}
}