DinoVdrone is a fine-tuned version of DinoVdrone-large-2025_02_03_31850-bs32_freeze_probs. It achieves the following results on the test set:

  • Loss: 0.4512
  • RMSE: 0.1689
  • MAE: 0.1261
  • KL Divergence: 0.5558

Model description

DinoVdrone is a model built on top of DinoVdrone-large-2025_02_03_31850-bs32_freeze_probs model for underwater multilabel image classification.The classification head is a combination of linear, ReLU, batch normalization, and dropout layers.

The source code for training the model can be found in this Git repository.


Intended uses & limitations

You can use the raw model for classify diverse marine species, encompassing coral morphotypes classes taken from the Global Coral Reef Monitoring Network (GCRMN), habitats classes and seagrass species.


Training and evaluation data

Details on the estimated number of images for each class are given in the following table:

Class train test val Total
Acropore_branched 575 108 99 782
Acropore_digitised 558 122 107 787
Acropore_tabular 325 119 108 552
Algae 2354 778 776 3908
Atra/Leucospilota 417 79 58 554
Dead_coral 1778 485 503 2766
Fish 1391 361 352 2104
Millepore 591 196 178 965
No_acropore_encrusting 460 212 211 883
No_acropore_massive 1778 604 592 2974
No_acropore_sub_massive 1563 439 443 2445
Rock 2381 793 781 3955
Rubble 2363 784 784 3931
Sand 2401 802 801 4004
Sea_cucumber 1116 313 287 1716
Sea_urchins 158 64 89 311

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • Number of Epochs: 37.0
  • Learning Rate: 0.001
  • Train Batch Size: 32
  • Eval Batch Size: 32
  • Optimizer: Adam
  • LR Scheduler Type: ReduceLROnPlateau with a patience of 5 epochs and a factor of 0.1
  • Freeze Encoder: Yes
  • Data Augmentation: Yes

Data Augmentation

Data were augmented using the following transformations :

Train Transforms

  • PreProcess: No additional parameters
  • Resize: probability=1.00
  • RandomHorizontalFlip: probability=0.25
  • RandomVerticalFlip: probability=0.25
  • ColorJiggle: probability=0.25
  • RandomPerspective: probability=0.25
  • Normalize: probability=1.00

Val Transforms

  • PreProcess: No additional parameters
  • Resize: probability=1.00
  • Normalize: probability=1.00

Training results

Epoch Validation Loss MAE RMSE KL div Learning Rate
1 0.5543646216392517 0.2278 0.2605 1.7912 0.001
2 0.48171326518058777 0.1602 0.2007 1.0345 0.001
3 0.4615386724472046 0.1370 0.1801 0.6064 0.001
4 0.4632064700126648 0.1391 0.1837 0.6577 0.001
5 0.4579373300075531 0.1363 0.1769 0.6678 0.001
6 0.4571229815483093 0.1330 0.1766 0.7896 0.001
7 0.4586440622806549 0.1307 0.1773 0.6493 0.001
8 0.45786425471305847 0.1319 0.1772 0.9475 0.001
9 0.4551210105419159 0.1306 0.1746 0.7271 0.001
10 0.45817646384239197 0.1316 0.1774 0.6882 0.001
11 0.46834859251976013 0.1372 0.1842 0.3715 0.001
12 0.4578668475151062 0.1316 0.1764 0.5271 0.001
13 0.4558842182159424 0.1301 0.1756 0.9168 0.001
14 0.4555540680885315 0.1292 0.1749 0.8827 0.001
15 0.45217740535736084 0.1262 0.1717 0.7009 0.001
16 0.45556434988975525 0.1286 0.1753 1.0038 0.001
17 0.458648681640625 0.1343 0.1775 0.2600 0.001
18 0.567169725894928 0.1638 0.2369 2.0548 0.001
19 0.45287612080574036 0.1287 0.1727 0.7115 0.001
20 0.45518893003463745 0.1285 0.1746 0.9694 0.001
21 0.45299893617630005 0.1282 0.1724 0.7789 0.001
22 0.4502638280391693 0.1261 0.1700 0.7369 0.0001
23 0.453466534614563 0.1280 0.1716 0.5027 0.0001
24 0.4502425491809845 0.1264 0.1697 0.5968 0.0001
25 0.45040303468704224 0.1267 0.1699 0.6215 0.0001
26 0.4509589374065399 0.1260 0.1704 0.6568 0.0001
27 0.4497845768928528 0.1262 0.1693 0.5748 0.0001
28 0.45060041546821594 0.1256 0.1701 0.7001 0.0001
29 0.4504892826080322 0.1263 0.1699 0.5840 0.0001
30 0.45060065388679504 0.1252 0.1703 0.8101 0.0001
31 0.45080825686454773 0.1249 0.1701 0.7416 0.0001
32 0.4501984417438507 0.1254 0.1697 0.6402 0.0001
33 0.4510658085346222 0.1250 0.1710 0.8411 0.0001
34 0.45148056745529175 0.1259 0.1711 0.7204 1e-05
35 0.4502483904361725 0.1247 0.1698 0.7355 1e-05
36 0.4508889615535736 0.1261 0.1703 0.4990 1e-05
37 0.44998663663864136 0.1260 0.1696 0.5451 1e-05

Framework Versions

  • Transformers: 4.48.0
  • Pytorch: 2.5.1+cu124
  • Datasets: 3.0.2
  • Tokenizers: 0.21.0
Downloads last month
19
Safetensors
Model size
307M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.