|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: microsoft/git-base |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
model-index: |
|
- name: git-base-one-entrance-dungeons-20 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# git-base-one-entrance-dungeons-20 |
|
|
|
This model is a fine-tuned version of [microsoft/git-base](https://huggingface.co./microsoft/git-base) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0115 |
|
- Wer Score: 0.2812 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 4 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine_with_restarts |
|
- lr_scheduler_warmup_steps: 100 |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer Score | |
|
|:-------------:|:-------:|:----:|:---------------:|:---------:| |
|
| 0.0112 | 0.6061 | 10 | 0.0108 | 0.2812 | |
|
| 0.0094 | 1.2121 | 20 | 0.0105 | 0.25 | |
|
| 0.0109 | 1.8182 | 30 | 0.0114 | 0.2656 | |
|
| 0.0112 | 2.4242 | 40 | 0.0103 | 0.25 | |
|
| 0.0114 | 3.0303 | 50 | 0.0108 | 0.2812 | |
|
| 0.0107 | 3.6364 | 60 | 0.0113 | 0.2812 | |
|
| 0.0119 | 4.2424 | 70 | 0.0108 | 0.2344 | |
|
| 0.0121 | 4.8485 | 80 | 0.0106 | 0.2344 | |
|
| 0.0115 | 5.4545 | 90 | 0.0112 | 0.25 | |
|
| 0.0126 | 6.0606 | 100 | 0.0107 | 0.25 | |
|
| 0.0118 | 6.6667 | 110 | 0.0119 | 0.25 | |
|
| 0.0116 | 7.2727 | 120 | 0.0105 | 0.2188 | |
|
| 0.0122 | 7.8788 | 130 | 0.0105 | 0.2656 | |
|
| 0.0103 | 8.4848 | 140 | 0.0109 | 0.2812 | |
|
| 0.0102 | 9.0909 | 150 | 0.0107 | 0.25 | |
|
| 0.0099 | 9.6970 | 160 | 0.0118 | 0.25 | |
|
| 0.0091 | 10.3030 | 170 | 0.0113 | 0.2656 | |
|
| 0.0095 | 10.9091 | 180 | 0.0109 | 0.2656 | |
|
| 0.0093 | 11.5152 | 190 | 0.0114 | 0.25 | |
|
| 0.0088 | 12.1212 | 200 | 0.0119 | 0.2812 | |
|
| 0.0091 | 12.7273 | 210 | 0.0123 | 0.2812 | |
|
| 0.009 | 13.3333 | 220 | 0.0119 | 0.2969 | |
|
| 0.0092 | 13.9394 | 230 | 0.0112 | 0.25 | |
|
| 0.0084 | 14.5455 | 240 | 0.0116 | 0.2812 | |
|
| 0.009 | 15.1515 | 250 | 0.0118 | 0.2969 | |
|
| 0.0077 | 15.7576 | 260 | 0.0120 | 0.2656 | |
|
| 0.008 | 16.3636 | 270 | 0.0116 | 0.2344 | |
|
| 0.0079 | 16.9697 | 280 | 0.0115 | 0.2812 | |
|
| 0.0077 | 17.5758 | 290 | 0.0115 | 0.2812 | |
|
| 0.0079 | 18.1818 | 300 | 0.0116 | 0.2812 | |
|
| 0.0084 | 18.7879 | 310 | 0.0115 | 0.2812 | |
|
| 0.0085 | 19.3939 | 320 | 0.0115 | 0.2812 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.4.1+cu121 |
|
- Datasets 3.0.1 |
|
- Tokenizers 0.19.1 |
|
|