metadata
license: creativeml-openrail-m
base_model: runwayml/stable-diffusion-v1-5
datasets:
- None
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
inference: true
Text-to-image finetuning - gremlin97/RemoteDiff
This pipeline was finetuned from runwayml/stable-diffusion-v1-5 on the None dataset. Below are some example images generated with the finetuned pipeline using the following prompts: ['A satellite image of a crop field']:
Pipeline usage
You can use the pipeline like so:
from diffusers import DiffusionPipeline
import torch
pipeline = DiffusionPipeline.from_pretrained("gremlin97/RemoteDiff", torch_dtype=torch.float16)
prompt = "A satellite image of a crop field"
image = pipeline(prompt).images[0]
image.save("my_image.png")
Training info
These are the key hyperparameters used during training:
- Epochs: 5
- Learning rate: 1e-06
- Batch size: 4
- Gradient accumulation steps: 4
- Image resolution: 224
- Mixed-precision: fp16
More information on all the CLI arguments and the environment are available on your wandb
run page.