Edit model card

image_classification

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1877
  • Accuracy: 0.625

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 40 1.8317 0.2938
No log 2.0 80 1.5647 0.4437
No log 3.0 120 1.4497 0.4938
No log 4.0 160 1.3529 0.5188
No log 5.0 200 1.2883 0.5125
No log 6.0 240 1.2861 0.5125
No log 7.0 280 1.2655 0.55
No log 8.0 320 1.2890 0.5125
No log 9.0 360 1.1955 0.575
No log 10.0 400 1.2180 0.5687
No log 11.0 440 1.2835 0.55
No log 12.0 480 1.2838 0.5188
1.0368 13.0 520 1.2168 0.5875
1.0368 14.0 560 1.1713 0.6312
1.0368 15.0 600 1.2222 0.5875
1.0368 16.0 640 1.3160 0.5563
1.0368 17.0 680 1.2512 0.6125
1.0368 18.0 720 1.3575 0.5563
1.0368 19.0 760 1.3514 0.5375
1.0368 20.0 800 1.3472 0.5625
1.0368 21.0 840 1.3449 0.5375
1.0368 22.0 880 1.3783 0.5375
1.0368 23.0 920 1.3240 0.575
1.0368 24.0 960 1.3391 0.5687
0.2885 25.0 1000 1.3723 0.55

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for grahmatagung/image_classification

Finetuned
(1693)
this model

Evaluation results