metadata
library_name: transformers
language:
- es
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_17_0
metrics:
- wer
model-index:
- name: Whisper Small Spanish - gonznm
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 17.0
type: mozilla-foundation/common_voice_17_0
config: es
split: None
args: 'config: es, split: test'
metrics:
- name: Wer
type: wer
value: 13.480378115153252
Whisper Small Spanish - gonznm
This model is a fine-tuned version of openai/whisper-small on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.2240
- Wer: 13.4804
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.2693 | 0.0454 | 1000 | 0.2640 | 16.0419 |
0.2345 | 0.0907 | 2000 | 0.2450 | 14.6287 |
0.2419 | 0.1361 | 3000 | 0.2318 | 14.1723 |
0.2184 | 0.1815 | 4000 | 0.2240 | 13.4804 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.0
- Tokenizers 0.19.1