whisper-small-es / README.md
gonznm's picture
Training in progress, step 1000
108177f verified
metadata
library_name: transformers
language:
  - es
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_17_0
metrics:
  - wer
model-index:
  - name: Whisper Small Spanish - gonznm
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 17.0
          type: mozilla-foundation/common_voice_17_0
          config: es
          split: None
          args: 'config: es, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 13.480378115153252

Whisper Small Spanish - gonznm

This model is a fine-tuned version of openai/whisper-small on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2240
  • Wer: 13.4804

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2693 0.0454 1000 0.2640 16.0419
0.2345 0.0907 2000 0.2450 14.6287
0.2419 0.1361 3000 0.2318 14.1723
0.2184 0.1815 4000 0.2240 13.4804

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1