gpt_train_12_256
This model is a fine-tuned version of openai-community/gpt2 on the gokuls/wiki_book_corpus_raw_dataset_tiny dataset. It achieves the following results on the evaluation set:
- Loss: 9.6016
- Accuracy: 0.0878
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 36
- eval_batch_size: 36
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
10.875 | 0.0001 | 1 | 10.875 | 0.0031 |
10.875 | 0.0001 | 2 | 10.875 | 0.0031 |
10.875 | 0.0002 | 3 | 10.875 | 0.0031 |
10.875 | 0.0002 | 4 | 10.875 | 0.0031 |
10.8672 | 0.0003 | 5 | 10.875 | 0.0031 |
10.875 | 0.0003 | 6 | 10.875 | 0.0031 |
10.8672 | 0.0004 | 7 | 10.875 | 0.0031 |
10.875 | 0.0004 | 8 | 10.875 | 0.0031 |
10.875 | 0.0005 | 9 | 10.875 | 0.0031 |
10.875 | 0.0005 | 10 | 10.875 | 0.0031 |
10.875 | 0.0006 | 11 | 10.875 | 0.0031 |
10.875 | 0.0007 | 12 | 10.875 | 0.0031 |
10.875 | 0.0007 | 13 | 10.875 | 0.0031 |
10.875 | 0.0008 | 14 | 10.875 | 0.0031 |
10.875 | 0.0008 | 15 | 10.875 | 0.0031 |
10.875 | 0.0009 | 16 | 10.875 | 0.0031 |
10.8672 | 0.0009 | 17 | 10.875 | 0.0031 |
10.875 | 0.0010 | 18 | 10.8047 | 0.0103 |
10.8125 | 0.0010 | 19 | 10.75 | 0.0119 |
10.7578 | 0.0011 | 20 | 10.6953 | 0.0180 |
10.7188 | 0.0011 | 21 | 10.6562 | 0.0319 |
10.6719 | 0.0012 | 22 | 10.625 | 0.0470 |
10.6328 | 0.0013 | 23 | 10.5938 | 0.0530 |
10.6172 | 0.0013 | 24 | 10.5703 | 0.0542 |
10.5859 | 0.0014 | 25 | 10.5469 | 0.0543 |
10.5547 | 0.0014 | 26 | 10.5312 | 0.0540 |
10.5391 | 0.0015 | 27 | 10.5156 | 0.0534 |
10.5547 | 0.0015 | 28 | 10.5 | 0.0531 |
10.5156 | 0.0016 | 29 | 10.4844 | 0.0535 |
10.4844 | 0.0016 | 30 | 10.4766 | 0.0542 |
10.4844 | 0.0017 | 31 | 10.4609 | 0.0548 |
10.4766 | 0.0017 | 32 | 10.4531 | 0.0551 |
10.4766 | 0.0018 | 33 | 10.4453 | 0.0557 |
10.4531 | 0.0019 | 34 | 10.4375 | 0.0565 |
10.4453 | 0.0019 | 35 | 10.4297 | 0.0570 |
10.4375 | 0.0020 | 36 | 10.4219 | 0.0575 |
10.4375 | 0.0020 | 37 | 10.4141 | 0.0581 |
10.4453 | 0.0021 | 38 | 10.4141 | 0.0583 |
10.3984 | 0.0021 | 39 | 10.4062 | 0.0585 |
10.4141 | 0.0022 | 40 | 10.3984 | 0.0586 |
10.4062 | 0.0022 | 41 | 10.3906 | 0.0587 |
10.3984 | 0.0023 | 42 | 10.3906 | 0.0587 |
10.3906 | 0.0023 | 43 | 10.3828 | 0.0588 |
10.4062 | 0.0024 | 44 | 10.375 | 0.0591 |
10.375 | 0.0025 | 45 | 10.375 | 0.0592 |
10.3984 | 0.0025 | 46 | 10.3672 | 0.0592 |
10.3828 | 0.0026 | 47 | 10.3594 | 0.0593 |
10.375 | 0.0026 | 48 | 10.3516 | 0.0597 |
10.3594 | 0.0027 | 49 | 10.3516 | 0.0599 |
10.3516 | 0.0027 | 50 | 10.3438 | 0.0602 |
10.3438 | 0.0028 | 51 | 10.3359 | 0.0604 |
10.3516 | 0.0028 | 52 | 10.3281 | 0.0606 |
10.3594 | 0.0029 | 53 | 10.3281 | 0.0607 |
10.3438 | 0.0029 | 54 | 10.3203 | 0.0608 |
10.3281 | 0.0030 | 55 | 10.3125 | 0.0608 |
10.3281 | 0.0031 | 56 | 10.3125 | 0.0607 |
10.3281 | 0.0031 | 57 | 10.3047 | 0.0607 |
10.3438 | 0.0032 | 58 | 10.3047 | 0.0607 |
10.3125 | 0.0032 | 59 | 10.2969 | 0.0609 |
10.3203 | 0.0033 | 60 | 10.2969 | 0.0612 |
10.3125 | 0.0033 | 61 | 10.2891 | 0.0615 |
10.2969 | 0.0034 | 62 | 10.2812 | 0.0618 |
10.2891 | 0.0034 | 63 | 10.2812 | 0.0620 |
10.2969 | 0.0035 | 64 | 10.2734 | 0.0622 |
10.2891 | 0.0035 | 65 | 10.2734 | 0.0622 |
10.2734 | 0.0036 | 66 | 10.2656 | 0.0623 |
10.2656 | 0.0037 | 67 | 10.2656 | 0.0623 |
10.2656 | 0.0037 | 68 | 10.2578 | 0.0623 |
10.2578 | 0.0038 | 69 | 10.25 | 0.0622 |
10.25 | 0.0038 | 70 | 10.25 | 0.0622 |
10.2656 | 0.0039 | 71 | 10.2422 | 0.0623 |
10.2344 | 0.0039 | 72 | 10.2422 | 0.0626 |
10.2578 | 0.0040 | 73 | 10.2344 | 0.0629 |
10.2266 | 0.0040 | 74 | 10.2344 | 0.0632 |
10.2422 | 0.0041 | 75 | 10.2266 | 0.0633 |
10.2656 | 0.0041 | 76 | 10.2266 | 0.0633 |
10.2266 | 0.0042 | 77 | 10.2188 | 0.0632 |
10.2422 | 0.0043 | 78 | 10.2188 | 0.0631 |
10.2031 | 0.0043 | 79 | 10.2109 | 0.0630 |
10.2031 | 0.0044 | 80 | 10.2109 | 0.0631 |
10.2188 | 0.0044 | 81 | 10.2031 | 0.0633 |
10.2188 | 0.0045 | 82 | 10.2031 | 0.0637 |
10.2344 | 0.0045 | 83 | 10.1953 | 0.0641 |
10.2188 | 0.0046 | 84 | 10.1953 | 0.0647 |
10.2031 | 0.0046 | 85 | 10.1875 | 0.0653 |
10.2266 | 0.0047 | 86 | 10.1875 | 0.0657 |
10.2109 | 0.0047 | 87 | 10.1797 | 0.0660 |
10.1641 | 0.0048 | 88 | 10.1797 | 0.0660 |
10.1953 | 0.0048 | 89 | 10.1719 | 0.0660 |
10.1875 | 0.0049 | 90 | 10.1719 | 0.0658 |
10.2031 | 0.0050 | 91 | 10.1641 | 0.0658 |
10.1719 | 0.0050 | 92 | 10.1641 | 0.0658 |
10.1953 | 0.0051 | 93 | 10.1562 | 0.0660 |
10.1641 | 0.0051 | 94 | 10.1562 | 0.0665 |
10.1797 | 0.0052 | 95 | 10.1484 | 0.0673 |
10.1797 | 0.0052 | 96 | 10.1484 | 0.0682 |
10.1406 | 0.0053 | 97 | 10.1406 | 0.0690 |
10.1562 | 0.0053 | 98 | 10.1406 | 0.0696 |
10.1406 | 0.0054 | 99 | 10.1328 | 0.0699 |
10.1641 | 0.0054 | 100 | 10.1328 | 0.0700 |
10.1797 | 0.0055 | 101 | 10.125 | 0.0699 |
10.1484 | 0.0056 | 102 | 10.125 | 0.0699 |
10.1406 | 0.0056 | 103 | 10.1172 | 0.0701 |
10.1328 | 0.0057 | 104 | 10.1172 | 0.0706 |
10.0938 | 0.0057 | 105 | 10.1094 | 0.0712 |
10.1016 | 0.0058 | 106 | 10.1094 | 0.0719 |
10.1016 | 0.0058 | 107 | 10.1016 | 0.0725 |
10.1094 | 0.0059 | 108 | 10.1016 | 0.0728 |
10.1016 | 0.0059 | 109 | 10.1016 | 0.0729 |
10.1016 | 0.0060 | 110 | 10.0938 | 0.0729 |
10.0781 | 0.0060 | 111 | 10.0938 | 0.0728 |
10.0938 | 0.0061 | 112 | 10.0859 | 0.0727 |
10.1172 | 0.0062 | 113 | 10.0859 | 0.0725 |
10.1016 | 0.0062 | 114 | 10.0781 | 0.0725 |
10.0938 | 0.0063 | 115 | 10.0781 | 0.0726 |
10.1016 | 0.0063 | 116 | 10.0703 | 0.0730 |
10.0703 | 0.0064 | 117 | 10.0703 | 0.0733 |
10.0938 | 0.0064 | 118 | 10.0625 | 0.0738 |
10.0859 | 0.0065 | 119 | 10.0625 | 0.0742 |
10.0781 | 0.0065 | 120 | 10.0625 | 0.0744 |
10.0625 | 0.0066 | 121 | 10.0547 | 0.0745 |
10.0547 | 0.0066 | 122 | 10.0547 | 0.0746 |
10.0781 | 0.0067 | 123 | 10.0469 | 0.0746 |
10.0625 | 0.0068 | 124 | 10.0469 | 0.0745 |
10.0781 | 0.0068 | 125 | 10.0391 | 0.0745 |
10.0781 | 0.0069 | 126 | 10.0391 | 0.0747 |
10.0703 | 0.0069 | 127 | 10.0391 | 0.0752 |
10.0547 | 0.0070 | 128 | 10.0312 | 0.0758 |
10.0469 | 0.0070 | 129 | 10.0312 | 0.0762 |
10.0391 | 0.0071 | 130 | 10.0234 | 0.0765 |
10.0391 | 0.0071 | 131 | 10.0234 | 0.0765 |
10.0469 | 0.0072 | 132 | 10.0156 | 0.0764 |
10.0469 | 0.0072 | 133 | 10.0156 | 0.0761 |
10.0234 | 0.0073 | 134 | 10.0156 | 0.0759 |
10.0312 | 0.0074 | 135 | 10.0078 | 0.0757 |
10.0312 | 0.0074 | 136 | 10.0078 | 0.0757 |
10.0078 | 0.0075 | 137 | 10.0 | 0.0759 |
10.0 | 0.0075 | 138 | 10.0 | 0.0763 |
10.0078 | 0.0076 | 139 | 10.0 | 0.0768 |
10.0234 | 0.0076 | 140 | 9.9922 | 0.0774 |
9.9922 | 0.0077 | 141 | 9.9922 | 0.0779 |
10.0234 | 0.0077 | 142 | 9.9844 | 0.0782 |
9.9766 | 0.0078 | 143 | 9.9844 | 0.0783 |
10.0156 | 0.0078 | 144 | 9.9844 | 0.0782 |
9.9844 | 0.0079 | 145 | 9.9766 | 0.0780 |
9.9922 | 0.0080 | 146 | 9.9766 | 0.0778 |
9.9844 | 0.0080 | 147 | 9.9688 | 0.0776 |
10.0 | 0.0081 | 148 | 9.9688 | 0.0775 |
9.9766 | 0.0081 | 149 | 9.9688 | 0.0776 |
9.9688 | 0.0082 | 150 | 9.9609 | 0.0778 |
9.9844 | 0.0082 | 151 | 9.9609 | 0.0782 |
9.9766 | 0.0083 | 152 | 9.9531 | 0.0785 |
9.9766 | 0.0083 | 153 | 9.9531 | 0.0787 |
9.9922 | 0.0084 | 154 | 9.9453 | 0.0787 |
9.9688 | 0.0084 | 155 | 9.9453 | 0.0787 |
9.9141 | 0.0085 | 156 | 9.9453 | 0.0785 |
9.9453 | 0.0086 | 157 | 9.9375 | 0.0783 |
9.9375 | 0.0086 | 158 | 9.9375 | 0.0782 |
9.9453 | 0.0087 | 159 | 9.9375 | 0.0782 |
9.9531 | 0.0087 | 160 | 9.9297 | 0.0784 |
9.9297 | 0.0088 | 161 | 9.9297 | 0.0788 |
9.9375 | 0.0088 | 162 | 9.9219 | 0.0793 |
9.9219 | 0.0089 | 163 | 9.9219 | 0.0797 |
9.9297 | 0.0089 | 164 | 9.9219 | 0.0799 |
9.9219 | 0.0090 | 165 | 9.9141 | 0.0802 |
9.9141 | 0.0090 | 166 | 9.9141 | 0.0801 |
9.9141 | 0.0091 | 167 | 9.9062 | 0.0799 |
9.9219 | 0.0092 | 168 | 9.9062 | 0.0797 |
9.9062 | 0.0092 | 169 | 9.9062 | 0.0795 |
9.9062 | 0.0093 | 170 | 9.8984 | 0.0795 |
9.9062 | 0.0093 | 171 | 9.8984 | 0.0797 |
9.9297 | 0.0094 | 172 | 9.8906 | 0.0800 |
9.8984 | 0.0094 | 173 | 9.8906 | 0.0804 |
9.875 | 0.0095 | 174 | 9.8906 | 0.0808 |
9.8984 | 0.0095 | 175 | 9.8828 | 0.0810 |
9.8828 | 0.0096 | 176 | 9.8828 | 0.0811 |
9.8828 | 0.0096 | 177 | 9.8828 | 0.0811 |
9.875 | 0.0097 | 178 | 9.875 | 0.0808 |
9.8828 | 0.0098 | 179 | 9.875 | 0.0805 |
9.8906 | 0.0098 | 180 | 9.8672 | 0.0803 |
9.8594 | 0.0099 | 181 | 9.8672 | 0.0803 |
9.8828 | 0.0099 | 182 | 9.8672 | 0.0804 |
9.8906 | 0.0100 | 183 | 9.8594 | 0.0807 |
9.8438 | 0.0100 | 184 | 9.8594 | 0.0809 |
9.8672 | 0.0101 | 185 | 9.8516 | 0.0810 |
9.8828 | 0.0101 | 186 | 9.8516 | 0.0811 |
9.8828 | 0.0102 | 187 | 9.8516 | 0.0811 |
9.8594 | 0.0102 | 188 | 9.8438 | 0.0811 |
9.8672 | 0.0103 | 189 | 9.8438 | 0.0811 |
9.8516 | 0.0104 | 190 | 9.8438 | 0.0812 |
9.8281 | 0.0104 | 191 | 9.8359 | 0.0813 |
9.8359 | 0.0105 | 192 | 9.8359 | 0.0816 |
9.8359 | 0.0105 | 193 | 9.8281 | 0.0818 |
9.8516 | 0.0106 | 194 | 9.8281 | 0.0819 |
9.8125 | 0.0106 | 195 | 9.8281 | 0.0817 |
9.8047 | 0.0107 | 196 | 9.8203 | 0.0815 |
9.8203 | 0.0107 | 197 | 9.8203 | 0.0814 |
9.8438 | 0.0108 | 198 | 9.8203 | 0.0814 |
9.8281 | 0.0108 | 199 | 9.8125 | 0.0815 |
9.8516 | 0.0109 | 200 | 9.8125 | 0.0819 |
9.8125 | 0.0110 | 201 | 9.8047 | 0.0823 |
9.7969 | 0.0110 | 202 | 9.8047 | 0.0826 |
9.8359 | 0.0111 | 203 | 9.8047 | 0.0827 |
9.8359 | 0.0111 | 204 | 9.7969 | 0.0828 |
9.8281 | 0.0112 | 205 | 9.7969 | 0.0826 |
9.8359 | 0.0112 | 206 | 9.7969 | 0.0824 |
9.8125 | 0.0113 | 207 | 9.7891 | 0.0823 |
9.8281 | 0.0113 | 208 | 9.7891 | 0.0824 |
9.8203 | 0.0114 | 209 | 9.7812 | 0.0826 |
9.7891 | 0.0114 | 210 | 9.7812 | 0.0826 |
9.7734 | 0.0115 | 211 | 9.7812 | 0.0826 |
9.7734 | 0.0116 | 212 | 9.7734 | 0.0830 |
9.7969 | 0.0116 | 213 | 9.7734 | 0.0835 |
9.7969 | 0.0117 | 214 | 9.7656 | 0.0840 |
9.7656 | 0.0117 | 215 | 9.7656 | 0.0844 |
9.7891 | 0.0118 | 216 | 9.7656 | 0.0844 |
9.7812 | 0.0118 | 217 | 9.7578 | 0.0845 |
9.7812 | 0.0119 | 218 | 9.7578 | 0.0844 |
9.7891 | 0.0119 | 219 | 9.7578 | 0.0844 |
9.7734 | 0.0120 | 220 | 9.75 | 0.0844 |
9.75 | 0.0120 | 221 | 9.75 | 0.0844 |
9.7578 | 0.0121 | 222 | 9.7422 | 0.0843 |
9.7422 | 0.0122 | 223 | 9.7422 | 0.0842 |
9.7578 | 0.0122 | 224 | 9.7422 | 0.0843 |
9.7344 | 0.0123 | 225 | 9.7344 | 0.0845 |
9.7578 | 0.0123 | 226 | 9.7344 | 0.0848 |
9.7734 | 0.0124 | 227 | 9.7344 | 0.0851 |
9.7266 | 0.0124 | 228 | 9.7266 | 0.0851 |
9.7344 | 0.0125 | 229 | 9.7266 | 0.0849 |
9.7344 | 0.0125 | 230 | 9.7266 | 0.0849 |
9.6875 | 0.0126 | 231 | 9.7188 | 0.0850 |
9.75 | 0.0126 | 232 | 9.7188 | 0.0854 |
9.7188 | 0.0127 | 233 | 9.7109 | 0.0857 |
9.7109 | 0.0128 | 234 | 9.7109 | 0.0860 |
9.7031 | 0.0128 | 235 | 9.7109 | 0.0861 |
9.7422 | 0.0129 | 236 | 9.7031 | 0.0861 |
9.7266 | 0.0129 | 237 | 9.7031 | 0.0861 |
9.7109 | 0.0130 | 238 | 9.7031 | 0.0858 |
9.7422 | 0.0130 | 239 | 9.6953 | 0.0856 |
9.6875 | 0.0131 | 240 | 9.6953 | 0.0854 |
9.7109 | 0.0131 | 241 | 9.6953 | 0.0853 |
9.6953 | 0.0132 | 242 | 9.6875 | 0.0853 |
9.7109 | 0.0132 | 243 | 9.6875 | 0.0856 |
9.6719 | 0.0133 | 244 | 9.6797 | 0.0859 |
9.7109 | 0.0134 | 245 | 9.6797 | 0.0863 |
9.6719 | 0.0134 | 246 | 9.6797 | 0.0866 |
9.7109 | 0.0135 | 247 | 9.6719 | 0.0867 |
9.7031 | 0.0135 | 248 | 9.6719 | 0.0866 |
9.6641 | 0.0136 | 249 | 9.6719 | 0.0866 |
9.6953 | 0.0136 | 250 | 9.6641 | 0.0866 |
9.6641 | 0.0137 | 251 | 9.6641 | 0.0866 |
9.6719 | 0.0137 | 252 | 9.6641 | 0.0868 |
9.6719 | 0.0138 | 253 | 9.6562 | 0.0869 |
9.6797 | 0.0138 | 254 | 9.6562 | 0.0870 |
9.6797 | 0.0139 | 255 | 9.6484 | 0.0870 |
9.6641 | 0.0139 | 256 | 9.6484 | 0.0870 |
9.6562 | 0.0140 | 257 | 9.6484 | 0.0869 |
9.6562 | 0.0141 | 258 | 9.6406 | 0.0867 |
9.6562 | 0.0141 | 259 | 9.6406 | 0.0865 |
9.6641 | 0.0142 | 260 | 9.6406 | 0.0866 |
9.6406 | 0.0142 | 261 | 9.6328 | 0.0868 |
9.6484 | 0.0143 | 262 | 9.6328 | 0.0871 |
9.6484 | 0.0143 | 263 | 9.6328 | 0.0873 |
9.6328 | 0.0144 | 264 | 9.625 | 0.0874 |
9.625 | 0.0144 | 265 | 9.625 | 0.0875 |
9.6328 | 0.0145 | 266 | 9.6172 | 0.0877 |
9.6641 | 0.0145 | 267 | 9.6172 | 0.0877 |
9.6484 | 0.0146 | 268 | 9.6172 | 0.0877 |
9.6328 | 0.0147 | 269 | 9.6094 | 0.0877 |
9.625 | 0.0147 | 270 | 9.6094 | 0.0875 |
9.625 | 0.0148 | 271 | 9.6094 | 0.0875 |
9.6094 | 0.0148 | 272 | 9.6016 | 0.0875 |
9.6172 | 0.0149 | 273 | 9.6016 | 0.0877 |
9.625 | 0.0149 | 274 | 9.6016 | 0.0878 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.1.0a0+32f93b1
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 17
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for gokulsrinivasagan/gpt_train_12_256
Base model
openai-community/gpt2Dataset used to train gokulsrinivasagan/gpt_train_12_256
Evaluation results
- Accuracy on gokuls/wiki_book_corpus_raw_dataset_tinyself-reported0.088