bert_uncased_L-4_H-128_A-2_rte
This model is a fine-tuned version of google/bert_uncased_L-4_H-128_A-2 on the GLUE RTE dataset. It achieves the following results on the evaluation set:
- Loss: 0.6659
- Accuracy: 0.6173
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.6967 | 1.0 | 10 | 0.6907 | 0.5523 |
0.689 | 2.0 | 20 | 0.6875 | 0.5740 |
0.6832 | 3.0 | 30 | 0.6854 | 0.5379 |
0.6776 | 4.0 | 40 | 0.6809 | 0.5632 |
0.6694 | 5.0 | 50 | 0.6780 | 0.5812 |
0.6599 | 6.0 | 60 | 0.6749 | 0.5740 |
0.6469 | 7.0 | 70 | 0.6726 | 0.5993 |
0.6392 | 8.0 | 80 | 0.6712 | 0.5776 |
0.6221 | 9.0 | 90 | 0.6682 | 0.5884 |
0.6034 | 10.0 | 100 | 0.6684 | 0.5957 |
0.5867 | 11.0 | 110 | 0.6717 | 0.5993 |
0.5686 | 12.0 | 120 | 0.6690 | 0.6065 |
0.5596 | 13.0 | 130 | 0.6659 | 0.6173 |
0.5377 | 14.0 | 140 | 0.6720 | 0.6101 |
0.5249 | 15.0 | 150 | 0.6820 | 0.6029 |
0.5019 | 16.0 | 160 | 0.6896 | 0.6065 |
0.492 | 17.0 | 170 | 0.6977 | 0.6029 |
0.4786 | 18.0 | 180 | 0.7027 | 0.6173 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.2.1+cu118
- Datasets 2.17.0
- Tokenizers 0.20.3
- Downloads last month
- 104
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for gokulsrinivasagan/bert_uncased_L-4_H-128_A-2_rte
Base model
google/bert_uncased_L-4_H-128_A-2