bert_uncased_L-2_H-256_A-4_qnli
This model is a fine-tuned version of google/bert_uncased_L-2_H-256_A-4 on the GLUE QNLI dataset. It achieves the following results on the evaluation set:
- Loss: 0.3967
- Accuracy: 0.8228
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.516 | 1.0 | 410 | 0.4330 | 0.8056 |
0.4487 | 2.0 | 820 | 0.4267 | 0.8056 |
0.4136 | 3.0 | 1230 | 0.3967 | 0.8228 |
0.3815 | 4.0 | 1640 | 0.4232 | 0.8116 |
0.3524 | 5.0 | 2050 | 0.4196 | 0.8170 |
0.3243 | 6.0 | 2460 | 0.4250 | 0.8184 |
0.2993 | 7.0 | 2870 | 0.4353 | 0.8146 |
0.276 | 8.0 | 3280 | 0.4545 | 0.8098 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.2.1+cu118
- Datasets 2.17.0
- Tokenizers 0.20.3
- Downloads last month
- 104
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for gokulsrinivasagan/bert_uncased_L-2_H-256_A-4_qnli
Base model
google/bert_uncased_L-2_H-256_A-4