|
--- |
|
library_name: transformers |
|
language: |
|
- en |
|
license: apache-2.0 |
|
base_model: google/bert_uncased_L-2_H-256_A-4 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- glue |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: bert_uncased_L-2_H-256_A-4_mnli |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: GLUE MNLI |
|
type: glue |
|
args: mnli |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.7332180634662328 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bert_uncased_L-2_H-256_A-4_mnli |
|
|
|
This model is a fine-tuned version of [google/bert_uncased_L-2_H-256_A-4](https://huggingface.co./google/bert_uncased_L-2_H-256_A-4) on the GLUE MNLI dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6492 |
|
- Accuracy: 0.7332 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 256 |
|
- eval_batch_size: 256 |
|
- seed: 10 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 50 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:| |
|
| 0.8512 | 1.0 | 1534 | 0.7602 | 0.6654 | |
|
| 0.7432 | 2.0 | 3068 | 0.7031 | 0.6940 | |
|
| 0.6912 | 3.0 | 4602 | 0.6761 | 0.7101 | |
|
| 0.6524 | 4.0 | 6136 | 0.6655 | 0.7179 | |
|
| 0.6224 | 5.0 | 7670 | 0.6699 | 0.7217 | |
|
| 0.5935 | 6.0 | 9204 | 0.6757 | 0.7192 | |
|
| 0.5689 | 7.0 | 10738 | 0.6650 | 0.7255 | |
|
| 0.5458 | 8.0 | 12272 | 0.6831 | 0.7271 | |
|
| 0.526 | 9.0 | 13806 | 0.6980 | 0.7222 | |
|
| 0.5031 | 10.0 | 15340 | 0.7006 | 0.7258 | |
|
| 0.4847 | 11.0 | 16874 | 0.7057 | 0.7250 | |
|
| 0.4673 | 12.0 | 18408 | 0.7297 | 0.7264 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.3 |
|
- Pytorch 2.2.1+cu118 |
|
- Datasets 2.17.0 |
|
- Tokenizers 0.20.3 |
|
|