|
--- |
|
library_name: transformers |
|
language: |
|
- en |
|
base_model: gokulsrinivasagan/bert_tiny_olda_book_10_v1 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- glue |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: bert_tiny_olda_book_10_v1_qqp |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: GLUE QQP |
|
type: glue |
|
args: qqp |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.8799901063566659 |
|
- name: F1 |
|
type: f1 |
|
value: 0.841251145138071 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bert_tiny_olda_book_10_v1_qqp |
|
|
|
This model is a fine-tuned version of [gokulsrinivasagan/bert_tiny_olda_book_10_v1](https://huggingface.co./gokulsrinivasagan/bert_tiny_olda_book_10_v1) on the GLUE QQP dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2816 |
|
- Accuracy: 0.8800 |
|
- F1: 0.8413 |
|
- Combined Score: 0.8606 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 256 |
|
- eval_batch_size: 256 |
|
- seed: 10 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 50 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:| |
|
| 0.3941 | 1.0 | 1422 | 0.3365 | 0.8496 | 0.7836 | 0.8166 | |
|
| 0.2912 | 2.0 | 2844 | 0.2905 | 0.8710 | 0.8323 | 0.8516 | |
|
| 0.2365 | 3.0 | 4266 | 0.2816 | 0.8800 | 0.8413 | 0.8606 | |
|
| 0.1917 | 4.0 | 5688 | 0.2965 | 0.8807 | 0.8349 | 0.8578 | |
|
| 0.157 | 5.0 | 7110 | 0.3086 | 0.8831 | 0.8474 | 0.8653 | |
|
| 0.1268 | 6.0 | 8532 | 0.3240 | 0.8849 | 0.8496 | 0.8672 | |
|
| 0.1053 | 7.0 | 9954 | 0.3513 | 0.8878 | 0.8496 | 0.8687 | |
|
| 0.0878 | 8.0 | 11376 | 0.3817 | 0.8864 | 0.8520 | 0.8692 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.1 |
|
- Pytorch 2.2.0+cu121 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.20.1 |
|
|