wav2vec2-base-960h-speech-commands

This model is a fine-tuned version of facebook/wav2vec2-base-960h on the speech_commands dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1612
  • Accuracy: 0.8067

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 48
  • eval_batch_size: 48
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.745 1.0 824 1.9237 0.7648
0.5664 2.0 1648 1.1424 0.7878
0.4337 3.0 2472 1.1234 0.8013
0.3346 4.0 3296 1.1040 0.8035
0.2683 5.0 4120 1.3128 0.7905
0.3498 6.0 4944 1.2172 0.7972
0.2556 7.0 5768 1.1906 0.7986
0.226 8.0 6592 1.1081 0.8044
0.2317 9.0 7416 1.1068 0.8049
0.1144 10.0 8240 1.1612 0.8067
0.2143 11.0 9064 1.1577 0.8031
0.1668 12.0 9888 1.1343 0.8058
0.2504 13.0 10712 1.0583 0.8067
0.218 14.0 11536 1.0677 0.8026
0.1025 15.0 12360 1.0690 0.8053

Framework versions

  • Transformers 4.43.3
  • Pytorch 2.2.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.19.1
Downloads last month
4
Safetensors
Model size
94.6M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for gokuls/wav2vec2-base-960h-speech-commands

Finetuned
(122)
this model

Dataset used to train gokuls/wav2vec2-base-960h-speech-commands

Evaluation results