mobilebert_sa_GLUE_Experiment_mrpc_256

This model is a fine-tuned version of google/mobilebert-uncased on the GLUE MRPC dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6111
  • Accuracy: 0.6912
  • F1: 0.7948
  • Combined Score: 0.7430

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 10
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Combined Score
0.6431 1.0 29 0.6261 0.6838 0.8122 0.7480
0.6296 2.0 58 0.6235 0.6838 0.8122 0.7480
0.6306 3.0 87 0.6237 0.6838 0.8122 0.7480
0.6297 4.0 116 0.6238 0.6838 0.8122 0.7480
0.6276 5.0 145 0.6207 0.6838 0.8122 0.7480
0.6197 6.0 174 0.6213 0.6838 0.8122 0.7480
0.6065 7.0 203 0.6284 0.6912 0.8043 0.7478
0.5258 8.0 232 0.6111 0.6912 0.7948 0.7430
0.4596 9.0 261 0.6506 0.7034 0.8052 0.7543
0.3953 10.0 290 0.7271 0.7034 0.7932 0.7483
0.3426 11.0 319 0.9509 0.6740 0.7542 0.7141
0.2821 12.0 348 1.0021 0.6863 0.7808 0.7335
0.2177 13.0 377 1.0359 0.6691 0.7676 0.7184

Framework versions

  • Transformers 4.26.0
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.8.0
  • Tokenizers 0.13.2
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train gokuls/mobilebert_sa_GLUE_Experiment_mrpc_256

Evaluation results