File size: 2,031 Bytes
b46eabf
bf5651d
 
b46eabf
 
 
bf5651d
 
b46eabf
 
 
 
bf5651d
 
 
 
 
 
 
 
 
 
 
 
b46eabf
 
 
 
 
 
 
bf5651d
b46eabf
bf5651d
 
b46eabf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: mobilebert_sa_GLUE_Experiment_logit_kd_data_aug_wnli_256
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: GLUE WNLI
      type: glue
      args: wnli
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.1267605633802817
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mobilebert_sa_GLUE_Experiment_logit_kd_data_aug_wnli_256

This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co./google/mobilebert-uncased) on the GLUE WNLI dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5755
- Accuracy: 0.1268

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.337         | 1.0   | 435  | 0.5755          | 0.1268   |
| 0.3007        | 2.0   | 870  | 0.5814          | 0.1127   |
| 0.2921        | 3.0   | 1305 | 0.6514          | 0.1127   |
| 0.2857        | 4.0   | 1740 | 0.6644          | 0.0704   |
| 0.2804        | 5.0   | 2175 | 0.6380          | 0.0986   |
| 0.2751        | 6.0   | 2610 | 0.6571          | 0.0986   |


### Framework versions

- Transformers 4.26.0
- Pytorch 1.14.0a0+410ce96
- Datasets 2.9.0
- Tokenizers 0.13.2