gokuls commited on
Commit
b46eabf
·
1 Parent(s): f79ed43

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +65 -0
README.md ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: mobilebert_sa_GLUE_Experiment_logit_kd_data_aug_wnli_256
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # mobilebert_sa_GLUE_Experiment_logit_kd_data_aug_wnli_256
16
+
17
+ This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on an unknown dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.6571
20
+ - Accuracy: 0.0986
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 5e-05
40
+ - train_batch_size: 128
41
+ - eval_batch_size: 128
42
+ - seed: 10
43
+ - distributed_type: multi-GPU
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - num_epochs: 50
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
51
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
52
+ | 0.337 | 1.0 | 435 | 0.5755 | 0.1268 |
53
+ | 0.3007 | 2.0 | 870 | 0.5814 | 0.1127 |
54
+ | 0.2921 | 3.0 | 1305 | 0.6514 | 0.1127 |
55
+ | 0.2857 | 4.0 | 1740 | 0.6644 | 0.0704 |
56
+ | 0.2804 | 5.0 | 2175 | 0.6380 | 0.0986 |
57
+ | 0.2751 | 6.0 | 2610 | 0.6571 | 0.0986 |
58
+
59
+
60
+ ### Framework versions
61
+
62
+ - Transformers 4.26.0
63
+ - Pytorch 1.14.0a0+410ce96
64
+ - Datasets 2.9.0
65
+ - Tokenizers 0.13.2