File size: 2,283 Bytes
be90bfb
469f7ad
 
be90bfb
 
 
469f7ad
 
be90bfb
 
 
 
469f7ad
 
 
 
 
 
 
 
 
 
 
 
be90bfb
 
 
 
 
 
 
469f7ad
be90bfb
469f7ad
 
be90bfb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: mobilebert_sa_GLUE_Experiment_logit_kd_data_aug_sst2
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: GLUE SST2
      type: glue
      args: sst2
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.8600917431192661
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mobilebert_sa_GLUE_Experiment_logit_kd_data_aug_sst2

This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co./google/mobilebert-uncased) on the GLUE SST2 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4834
- Accuracy: 0.8601

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.4923        | 1.0   | 8748  | 0.5804          | 0.8314   |
| 0.3226        | 2.0   | 17496 | 0.5184          | 0.8475   |
| 0.2725        | 3.0   | 26244 | 0.5341          | 0.8509   |
| 0.2453        | 4.0   | 34992 | 0.4892          | 0.8521   |
| 0.2278        | 5.0   | 43740 | 0.4834          | 0.8601   |
| 0.2149        | 6.0   | 52488 | 0.4980          | 0.8624   |
| 0.2047        | 7.0   | 61236 | 0.5031          | 0.8532   |
| 0.1963        | 8.0   | 69984 | 0.5011          | 0.8509   |
| 0.1893        | 9.0   | 78732 | 0.4899          | 0.8567   |
| 0.1835        | 10.0  | 87480 | 0.4965          | 0.8589   |


### Framework versions

- Transformers 4.26.0
- Pytorch 1.14.0a0+410ce96
- Datasets 2.9.0
- Tokenizers 0.13.2