gokuls commited on
Commit
469f7ad
·
1 Parent(s): be90bfb

End of training

Browse files
README.md CHANGED
@@ -1,12 +1,27 @@
1
  ---
 
 
2
  license: apache-2.0
3
  tags:
4
  - generated_from_trainer
 
 
5
  metrics:
6
  - accuracy
7
  model-index:
8
  - name: mobilebert_sa_GLUE_Experiment_logit_kd_data_aug_sst2
9
- results: []
 
 
 
 
 
 
 
 
 
 
 
10
  ---
11
 
12
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -14,10 +29,10 @@ should probably proofread and complete it, then remove this comment. -->
14
 
15
  # mobilebert_sa_GLUE_Experiment_logit_kd_data_aug_sst2
16
 
17
- This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on an unknown dataset.
18
  It achieves the following results on the evaluation set:
19
- - Loss: 0.4965
20
- - Accuracy: 0.8589
21
 
22
  ## Model description
23
 
 
1
  ---
2
+ language:
3
+ - en
4
  license: apache-2.0
5
  tags:
6
  - generated_from_trainer
7
+ datasets:
8
+ - glue
9
  metrics:
10
  - accuracy
11
  model-index:
12
  - name: mobilebert_sa_GLUE_Experiment_logit_kd_data_aug_sst2
13
+ results:
14
+ - task:
15
+ name: Text Classification
16
+ type: text-classification
17
+ dataset:
18
+ name: GLUE SST2
19
+ type: glue
20
+ args: sst2
21
+ metrics:
22
+ - name: Accuracy
23
+ type: accuracy
24
+ value: 0.8600917431192661
25
  ---
26
 
27
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
29
 
30
  # mobilebert_sa_GLUE_Experiment_logit_kd_data_aug_sst2
31
 
32
+ This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE SST2 dataset.
33
  It achieves the following results on the evaluation set:
34
+ - Loss: 0.4834
35
+ - Accuracy: 0.8601
36
 
37
  ## Model description
38
 
all_results.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 10.0,
3
+ "eval_accuracy": 0.8600917431192661,
4
+ "eval_loss": 0.4834231436252594,
5
+ "eval_runtime": 2.1074,
6
+ "eval_samples": 872,
7
+ "eval_samples_per_second": 413.789,
8
+ "eval_steps_per_second": 3.322,
9
+ "train_loss": 0.25491558645324286,
10
+ "train_runtime": 66746.3863,
11
+ "train_samples": 1119619,
12
+ "train_samples_per_second": 838.711,
13
+ "train_steps_per_second": 6.553
14
+ }
eval_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 10.0,
3
+ "eval_accuracy": 0.8600917431192661,
4
+ "eval_loss": 0.4834231436252594,
5
+ "eval_runtime": 2.1074,
6
+ "eval_samples": 872,
7
+ "eval_samples_per_second": 413.789,
8
+ "eval_steps_per_second": 3.322
9
+ }
logs/events.out.tfevents.1675468938.serv-3329.2671356.5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dcea7d214bb85035c334a29da23e51324da8d5ca2e2923231ef3c2ee02602cea
3
+ size 369
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 10.0,
3
+ "train_loss": 0.25491558645324286,
4
+ "train_runtime": 66746.3863,
5
+ "train_samples": 1119619,
6
+ "train_samples_per_second": 838.711,
7
+ "train_steps_per_second": 6.553
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,175 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.4834231436252594,
3
+ "best_model_checkpoint": "mobilebert_sa_GLUE_Experiment_logit_kd_data_aug_sst2/checkpoint-43740",
4
+ "epoch": 10.0,
5
+ "global_step": 87480,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 1.0,
12
+ "learning_rate": 4.9e-05,
13
+ "loss": 0.4923,
14
+ "step": 8748
15
+ },
16
+ {
17
+ "epoch": 1.0,
18
+ "eval_accuracy": 0.8314220183486238,
19
+ "eval_loss": 0.5804396867752075,
20
+ "eval_runtime": 2.0555,
21
+ "eval_samples_per_second": 424.236,
22
+ "eval_steps_per_second": 3.406,
23
+ "step": 8748
24
+ },
25
+ {
26
+ "epoch": 2.0,
27
+ "learning_rate": 4.8e-05,
28
+ "loss": 0.3226,
29
+ "step": 17496
30
+ },
31
+ {
32
+ "epoch": 2.0,
33
+ "eval_accuracy": 0.8474770642201835,
34
+ "eval_loss": 0.5183534622192383,
35
+ "eval_runtime": 2.0608,
36
+ "eval_samples_per_second": 423.145,
37
+ "eval_steps_per_second": 3.397,
38
+ "step": 17496
39
+ },
40
+ {
41
+ "epoch": 3.0,
42
+ "learning_rate": 4.7e-05,
43
+ "loss": 0.2725,
44
+ "step": 26244
45
+ },
46
+ {
47
+ "epoch": 3.0,
48
+ "eval_accuracy": 0.8509174311926605,
49
+ "eval_loss": 0.5340900421142578,
50
+ "eval_runtime": 2.0579,
51
+ "eval_samples_per_second": 423.725,
52
+ "eval_steps_per_second": 3.401,
53
+ "step": 26244
54
+ },
55
+ {
56
+ "epoch": 4.0,
57
+ "learning_rate": 4.600000000000001e-05,
58
+ "loss": 0.2453,
59
+ "step": 34992
60
+ },
61
+ {
62
+ "epoch": 4.0,
63
+ "eval_accuracy": 0.8520642201834863,
64
+ "eval_loss": 0.4892486333847046,
65
+ "eval_runtime": 2.0635,
66
+ "eval_samples_per_second": 422.583,
67
+ "eval_steps_per_second": 3.392,
68
+ "step": 34992
69
+ },
70
+ {
71
+ "epoch": 5.0,
72
+ "learning_rate": 4.5e-05,
73
+ "loss": 0.2278,
74
+ "step": 43740
75
+ },
76
+ {
77
+ "epoch": 5.0,
78
+ "eval_accuracy": 0.8600917431192661,
79
+ "eval_loss": 0.4834231436252594,
80
+ "eval_runtime": 2.0608,
81
+ "eval_samples_per_second": 423.143,
82
+ "eval_steps_per_second": 3.397,
83
+ "step": 43740
84
+ },
85
+ {
86
+ "epoch": 6.0,
87
+ "learning_rate": 4.4000000000000006e-05,
88
+ "loss": 0.2149,
89
+ "step": 52488
90
+ },
91
+ {
92
+ "epoch": 6.0,
93
+ "eval_accuracy": 0.8623853211009175,
94
+ "eval_loss": 0.49795687198638916,
95
+ "eval_runtime": 2.0894,
96
+ "eval_samples_per_second": 417.337,
97
+ "eval_steps_per_second": 3.35,
98
+ "step": 52488
99
+ },
100
+ {
101
+ "epoch": 7.0,
102
+ "learning_rate": 4.3e-05,
103
+ "loss": 0.2047,
104
+ "step": 61236
105
+ },
106
+ {
107
+ "epoch": 7.0,
108
+ "eval_accuracy": 0.8532110091743119,
109
+ "eval_loss": 0.5031076073646545,
110
+ "eval_runtime": 2.0529,
111
+ "eval_samples_per_second": 424.765,
112
+ "eval_steps_per_second": 3.41,
113
+ "step": 61236
114
+ },
115
+ {
116
+ "epoch": 8.0,
117
+ "learning_rate": 4.2e-05,
118
+ "loss": 0.1963,
119
+ "step": 69984
120
+ },
121
+ {
122
+ "epoch": 8.0,
123
+ "eval_accuracy": 0.8509174311926605,
124
+ "eval_loss": 0.5010948777198792,
125
+ "eval_runtime": 2.0612,
126
+ "eval_samples_per_second": 423.064,
127
+ "eval_steps_per_second": 3.396,
128
+ "step": 69984
129
+ },
130
+ {
131
+ "epoch": 9.0,
132
+ "learning_rate": 4.1e-05,
133
+ "loss": 0.1893,
134
+ "step": 78732
135
+ },
136
+ {
137
+ "epoch": 9.0,
138
+ "eval_accuracy": 0.856651376146789,
139
+ "eval_loss": 0.4899327754974365,
140
+ "eval_runtime": 2.0597,
141
+ "eval_samples_per_second": 423.371,
142
+ "eval_steps_per_second": 3.399,
143
+ "step": 78732
144
+ },
145
+ {
146
+ "epoch": 10.0,
147
+ "learning_rate": 4e-05,
148
+ "loss": 0.1835,
149
+ "step": 87480
150
+ },
151
+ {
152
+ "epoch": 10.0,
153
+ "eval_accuracy": 0.8589449541284404,
154
+ "eval_loss": 0.49648550152778625,
155
+ "eval_runtime": 2.3706,
156
+ "eval_samples_per_second": 367.844,
157
+ "eval_steps_per_second": 2.953,
158
+ "step": 87480
159
+ },
160
+ {
161
+ "epoch": 10.0,
162
+ "step": 87480,
163
+ "total_flos": 3.5104824999542784e+17,
164
+ "train_loss": 0.25491558645324286,
165
+ "train_runtime": 66746.3863,
166
+ "train_samples_per_second": 838.711,
167
+ "train_steps_per_second": 6.553
168
+ }
169
+ ],
170
+ "max_steps": 437400,
171
+ "num_train_epochs": 50,
172
+ "total_flos": 3.5104824999542784e+17,
173
+ "trial_name": null,
174
+ "trial_params": null
175
+ }