mobilebert_sa_GLUE_Experiment_logit_kd_data_aug_mrpc_256

This model is a fine-tuned version of google/mobilebert-uncased on the GLUE MRPC dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1267
  • Accuracy: 0.9926
  • F1: 0.9947
  • Combined Score: 0.9936

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 10
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Combined Score
0.3017 1.0 1959 0.2241 0.9608 0.9713 0.9661
0.233 2.0 3918 0.2357 0.9828 0.9876 0.9852
0.2241 3.0 5877 0.1908 0.9706 0.9786 0.9746
0.2189 4.0 7836 0.1863 0.9755 0.9824 0.9789
0.2149 5.0 9795 0.1868 0.9804 0.9858 0.9831
0.211 6.0 11754 0.1735 0.9804 0.9859 0.9831
0.2073 7.0 13713 0.1875 0.9828 0.9876 0.9852
0.204 8.0 15672 0.1690 0.9853 0.9894 0.9873
0.2014 9.0 17631 0.1597 0.9853 0.9893 0.9873
0.1992 10.0 19590 0.1604 0.9877 0.9911 0.9894
0.1975 11.0 21549 0.1563 0.9853 0.9894 0.9873
0.1959 12.0 23508 0.1518 0.9853 0.9894 0.9873
0.1948 13.0 25467 0.1429 0.9902 0.9929 0.9915
0.1937 14.0 27426 0.1484 0.9853 0.9894 0.9873
0.1928 15.0 29385 0.1527 0.9804 0.9856 0.9830
0.1919 16.0 31344 0.1433 0.9926 0.9947 0.9936
0.1913 17.0 33303 0.1445 0.9902 0.9929 0.9915
0.1905 18.0 35262 0.1407 0.9926 0.9947 0.9936
0.1899 19.0 37221 0.1402 0.9926 0.9947 0.9936
0.1892 20.0 39180 0.1387 0.9926 0.9947 0.9936
0.1887 21.0 41139 0.1384 0.9926 0.9947 0.9936
0.1882 22.0 43098 0.1430 0.9951 0.9964 0.9958
0.1877 23.0 45057 0.1384 0.9951 0.9964 0.9958
0.1871 24.0 47016 0.1398 0.9951 0.9964 0.9958
0.1867 25.0 48975 0.1336 0.9926 0.9947 0.9936
0.1863 26.0 50934 0.1368 0.9951 0.9964 0.9958
0.1859 27.0 52893 0.1337 0.9951 0.9964 0.9958
0.1855 28.0 54852 0.1352 0.9926 0.9947 0.9936
0.1851 29.0 56811 0.1314 0.9951 0.9964 0.9958
0.1847 30.0 58770 0.1333 0.9951 0.9964 0.9958
0.1844 31.0 60729 0.1368 0.9951 0.9964 0.9958
0.184 32.0 62688 0.1310 0.9951 0.9964 0.9958
0.1837 33.0 64647 0.1321 0.9951 0.9964 0.9958
0.1834 34.0 66606 0.1302 0.9926 0.9947 0.9936
0.183 35.0 68565 0.1320 0.9951 0.9964 0.9958
0.1827 36.0 70524 0.1303 0.9951 0.9964 0.9958
0.1825 37.0 72483 0.1273 0.9951 0.9964 0.9958
0.1822 38.0 74442 0.1293 0.9951 0.9964 0.9958
0.1819 39.0 76401 0.1296 0.9951 0.9964 0.9958
0.1817 40.0 78360 0.1305 0.9926 0.9947 0.9936
0.1814 41.0 80319 0.1267 0.9926 0.9947 0.9936
0.1812 42.0 82278 0.1267 0.9951 0.9964 0.9958
0.1809 43.0 84237 0.1278 0.9902 0.9929 0.9915
0.1807 44.0 86196 0.1293 0.9951 0.9964 0.9958
0.1805 45.0 88155 0.1269 0.9951 0.9964 0.9958
0.1803 46.0 90114 0.1284 0.9951 0.9964 0.9958

Framework versions

  • Transformers 4.26.0
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.9.0
  • Tokenizers 0.13.2
Downloads last month
8
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train gokuls/mobilebert_sa_GLUE_Experiment_logit_kd_data_aug_mrpc_256

Evaluation results