gokuls's picture
End of training
486c2fc
|
raw
history blame
2.51 kB
---
language:
- en
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- spearmanr
model-index:
- name: mobilebert_add_GLUE_Experiment_logit_kd_stsb_128
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE STSB
type: glue
config: stsb
split: validation
args: stsb
metrics:
- name: Spearmanr
type: spearmanr
value: 0.041438738522880283
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mobilebert_add_GLUE_Experiment_logit_kd_stsb_128
This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co./google/mobilebert-uncased) on the GLUE STSB dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1505
- Pearson: 0.0470
- Spearmanr: 0.0414
- Combined Score: 0.0442
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | Combined Score |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|:--------------:|
| 2.524 | 1.0 | 45 | 1.3607 | -0.0066 | -0.0281 | -0.0174 |
| 1.0877 | 2.0 | 90 | 1.1729 | 0.0446 | 0.0497 | 0.0472 |
| 1.0648 | 3.0 | 135 | 1.1505 | 0.0470 | 0.0414 | 0.0442 |
| 1.0737 | 4.0 | 180 | 1.1564 | 0.0472 | 0.0464 | 0.0468 |
| 1.0445 | 5.0 | 225 | 1.1971 | 0.0529 | 0.0575 | 0.0552 |
| 1.0296 | 6.0 | 270 | 1.1723 | 0.0578 | 0.0727 | 0.0652 |
| 1.026 | 7.0 | 315 | 1.2735 | 0.0621 | 0.0606 | 0.0614 |
| 1.0216 | 8.0 | 360 | 1.2214 | 0.0666 | 0.0700 | 0.0683 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.14.0a0+410ce96
- Datasets 2.9.0
- Tokenizers 0.13.2