bert_uncased_L-6_H-768_A-12_massive
This model is a fine-tuned version of google/bert_uncased_L-6_H-768_A-12 on the massive dataset. It achieves the following results on the evaluation set:
- Loss: 0.5459
- Accuracy: 0.8888
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 33
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.0422 | 1.0 | 180 | 0.8433 | 0.8160 |
0.6599 | 2.0 | 360 | 0.5532 | 0.8618 |
0.3564 | 3.0 | 540 | 0.5180 | 0.8701 |
0.212 | 4.0 | 720 | 0.4955 | 0.8805 |
0.1358 | 5.0 | 900 | 0.5076 | 0.8844 |
0.0859 | 6.0 | 1080 | 0.5193 | 0.8864 |
0.059 | 7.0 | 1260 | 0.5459 | 0.8888 |
0.038 | 8.0 | 1440 | 0.5811 | 0.8834 |
0.0255 | 9.0 | 1620 | 0.5875 | 0.8849 |
0.0171 | 10.0 | 1800 | 0.5881 | 0.8834 |
0.0122 | 11.0 | 1980 | 0.6051 | 0.8829 |
0.0086 | 12.0 | 2160 | 0.6117 | 0.8879 |
0.007 | 13.0 | 2340 | 0.6032 | 0.8864 |
0.006 | 14.0 | 2520 | 0.6112 | 0.8824 |
0.0055 | 15.0 | 2700 | 0.6130 | 0.8844 |
Framework versions
- Transformers 4.34.0
- Pytorch 1.14.0a0+410ce96
- Datasets 2.14.5
- Tokenizers 0.14.1
- Downloads last month
- 125
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for gokuls/bert_uncased_L-6_H-768_A-12_massive
Base model
google/bert_uncased_L-6_H-768_A-12