bert_uncased_L-4_H-128_A-2_massive

This model is a fine-tuned version of google/bert_uncased_L-4_H-128_A-2 on the massive dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5917
  • Accuracy: 0.7122

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 33
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
3.8362 1.0 180 3.5577 0.2750
3.3785 2.0 360 3.1194 0.4215
3.0059 3.0 540 2.7843 0.4845
2.7219 4.0 720 2.5372 0.5273
2.4947 5.0 900 2.3286 0.5578
2.3072 6.0 1080 2.1582 0.5947
2.1494 7.0 1260 2.0276 0.6232
2.0206 8.0 1440 1.9108 0.6375
1.9207 9.0 1620 1.8206 0.6704
1.83 10.0 1800 1.7500 0.6891
1.7592 11.0 1980 1.6872 0.7004
1.7011 12.0 2160 1.6489 0.7019
1.6627 13.0 2340 1.6160 0.7093
1.6347 14.0 2520 1.5992 0.7118
1.6216 15.0 2700 1.5917 0.7122

Framework versions

  • Transformers 4.34.0
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
129
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for gokuls/bert_uncased_L-4_H-128_A-2_massive

Finetuned
(13)
this model

Evaluation results