|
--- |
|
language: ko |
|
license: mit |
|
tags: |
|
- bart |
|
--- |
|
|
|
|
|
# Model Card for kobart-base-v2 |
|
|
|
|
|
# Model Details |
|
|
|
## Model Description |
|
|
|
[**BART**](https://arxiv.org/pdf/1910.13461.pdf)(**B**idirectional and **A**uto-**R**egressive **T**ransformers)λ μ
λ ₯ ν
μ€νΈ μΌλΆμ λ
Έμ΄μ¦λ₯Ό μΆκ°νμ¬ μ΄λ₯Ό λ€μ μλ¬ΈμΌλ‘ 볡ꡬνλ `autoencoder`μ ννλ‘ νμ΅μ΄ λ©λλ€. νκ΅μ΄ BART(μ΄ν **KoBART**) λ λ
Όλ¬Έμμ μ¬μ©λ `Text Infilling` λ
Έμ΄μ¦ ν¨μλ₯Ό μ¬μ©νμ¬ **40GB** μ΄μμ νκ΅μ΄ ν
μ€νΈμ λν΄μ νμ΅ν νκ΅μ΄ `encoder-decoder` μΈμ΄ λͺ¨λΈμ
λλ€. μ΄λ₯Ό ν΅ν΄ λμΆλ `KoBART-base`λ₯Ό λ°°ν¬ν©λλ€. |
|
|
|
- **Developed by:** More information needed |
|
- **Shared by [Optional]:** Heewon(Haven) Jeon |
|
- **Model type:** Feature Extraction |
|
- **Language(s) (NLP):** Korean |
|
- **License:** MIT |
|
- **Parent Model:** BART |
|
- **Resources for more information:** |
|
- [GitHub Repo](https://github.com/haven-jeon/KoBART) |
|
- [Model Demo Space](https://huggingface.co./spaces/gogamza/kobart-summarization) |
|
|
|
|
|
|
|
# Uses |
|
|
|
|
|
## Direct Use |
|
This model can be used for the task of Feature Extraction. |
|
|
|
## Downstream Use [Optional] |
|
|
|
More information needed. |
|
|
|
## Out-of-Scope Use |
|
|
|
The model should not be used to intentionally create hostile or alienating environments for people. |
|
|
|
# Bias, Risks, and Limitations |
|
|
|
|
|
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups. |
|
|
|
|
|
|
|
## Recommendations |
|
|
|
|
|
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. |
|
|
|
# Training Details |
|
|
|
## Training Data |
|
|
|
| Data | # of Sentences | |
|
|-------|---------------:| |
|
| Korean Wiki | 5M | |
|
| Other corpus | 0.27B | |
|
|
|
νκ΅μ΄ μν€ λ°±κ³Ό μ΄μΈ, λ΄μ€, μ±
, [λͺ¨λμ λ§λμΉ v1.0(λν, λ΄μ€, ...)](https://corpus.korean.go.kr/), [μ²μλ κ΅λ―Όμ²μ](https://github.com/akngs/petitions) λ±μ λ€μν λ°μ΄ν°κ° λͺ¨λΈ νμ΅μ μ¬μ©λμμ΅λλ€. |
|
|
|
`vocab` μ¬μ΄μ¦λ 30,000 μ΄λ©° λνμ μμ£Ό μ°μ΄λ μλμ κ°μ μ΄λͺ¨ν°μ½, μ΄λͺ¨μ§ λ±μ μΆκ°νμ¬ ν΄λΉ ν ν°μ μΈμ λ₯λ ₯μ μ¬λ Έμ΅λλ€. |
|
> π, π, π, π
, π€£, .. , `:-)`, `:)`, `-)`, `(-:`... |
|
|
|
## Training Procedure |
|
|
|
|
|
### Tokenizer |
|
|
|
[`tokenizers`](https://github.com/huggingface/tokenizers) ν¨ν€μ§μ `Character BPE tokenizer`λ‘ νμ΅λμμ΅λλ€. |
|
|
|
|
|
|
|
|
|
|
|
### Speeds, Sizes, Times |
|
| Model | # of params | Type | # of layers | # of heads | ffn_dim | hidden_dims | |
|
|--------------|:----:|:-------:|--------:|--------:|--------:|--------------:| |
|
| `KoBART-base` | 124M | Encoder | 6 | 16 | 3072 | 768 | |
|
| | | Decoder | 6 | 16 | 3072 | 768 | |
|
|
|
|
|
# Evaluation |
|
|
|
|
|
## Testing Data, Factors & Metrics |
|
|
|
### Testing Data |
|
|
|
More information needed |
|
|
|
|
|
### Factors |
|
More information needed |
|
|
|
### Metrics |
|
|
|
More information needed |
|
|
|
|
|
## Results |
|
|
|
NSMC |
|
- acc. : 0.901 |
|
|
|
The model authors also note in the [GitHub Repo](https://github.com/haven-jeon/KoBART): |
|
|
|
| | [NSMC](https://github.com/e9t/nsmc)(acc) | [KorSTS](https://github.com/kakaobrain/KorNLUDatasets)(spearman) | [Question Pair](https://github.com/aisolab/nlp_classification/tree/master/BERT_pairwise_text_classification/qpair)(acc) | |
|
|---|---|---|---| |
|
| **KoBART-base** | 90.24 | 81.66 | 94.34 | |
|
|
|
# Model Examination |
|
|
|
More information needed |
|
|
|
# Environmental Impact |
|
|
|
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). |
|
|
|
- **Hardware Type:** More information needed |
|
- **Hours used:** More information needed |
|
- **Cloud Provider:** More information needed |
|
- **Compute Region:** More information needed |
|
- **Carbon Emitted:** More information needed |
|
|
|
# Technical Specifications [optional] |
|
|
|
## Model Architecture and Objective |
|
|
|
More information needed |
|
|
|
## Compute Infrastructure |
|
|
|
More information needed |
|
|
|
### Hardware |
|
|
|
|
|
More information needed |
|
|
|
### Software |
|
|
|
More information needed. |
|
|
|
# Citation |
|
|
|
|
|
**BibTeX:** |
|
|
|
|
|
More information needed. |
|
|
|
|
|
|
|
|
|
|
|
# Glossary [optional] |
|
More information needed |
|
|
|
# More Information [optional] |
|
More information needed |
|
|
|
|
|
# Model Card Authors [optional] |
|
|
|
Heewon(Haven) Jeon in collaboration with Ezi Ozoani and the Hugging Face team |
|
|
|
|
|
# Model Card Contact |
|
The model authors note in the [GitHub Repo](https://github.com/haven-jeon/KoBART): |
|
`KoBART` κ΄λ ¨ μ΄μλ [μ΄κ³³](https://github.com/SKT-AI/KoBART/issues)μ μ¬λ €μ£ΌμΈμ. |
|
|
|
# How to Get Started with the Model |
|
|
|
Use the code below to get started with the model. |
|
|
|
<details> |
|
<summary> Click to expand </summary> |
|
|
|
```python |
|
from transformers import PreTrainedTokenizerFast, BartModel |
|
|
|
tokenizer = PreTrainedTokenizerFast.from_pretrained('gogamza/kobart-base-v2') |
|
model = BartModel.from_pretrained('gogamza/kobart-base-v2') |
|
``` |
|
</details> |
|
|