metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- xsum
metrics:
- rouge
model-index:
- name: mt5-small-finetuned-xsum
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: xsum
type: xsum
args: default
metrics:
- name: Rouge1
type: rouge
value: 2.4762
mt5-small-finetuned-xsum
This model is a fine-tuned version of google/mt5-small on the xsum dataset. It achieves the following results on the evaluation set:
- Loss: nan
- Rouge1: 2.4762
- Rouge2: 0.2236
- Rougel: 2.2834
- Rougelsum: 2.2792
- Gen Len: 4.6402
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
nan | 1.0 | 1276 | nan | 2.4762 | 0.2236 | 2.2834 | 2.2792 | 4.6402 |
Framework versions
- Transformers 4.10.2
- Pytorch 1.9.0+cu102
- Datasets 1.12.1
- Tokenizers 0.10.3