model2
This model is a fine-tuned version of nvidia/mit-b2 on the giuseppemartino/isaid_sam_predicted dataset. It achieves the following results on the evaluation set:
- Loss: 0.2318
- Mean Iou: 0.2504
- Mean Accuracy: 0.3019
- Overall Accuracy: 0.4542
- Accuracy Background: nan
- Accuracy Ship: 0.6330
- Accuracy Small-vehicle: 0.4644
- Accuracy Tennis-court: 0.0280
- Accuracy Helicopter: nan
- Accuracy Basketball-court: 0.0
- Accuracy Ground-track-field: 0.6010
- Accuracy Swimming-pool: nan
- Accuracy Harbor: 0.4575
- Accuracy Soccer-ball-field: 0.7776
- Accuracy Plane: nan
- Accuracy Storage-tank: 0.0
- Accuracy Baseball-diamond: nan
- Accuracy Large-vehicle: 0.3594
- Accuracy Bridge: 0.0
- Accuracy Roundabout: 0.0
- Iou Background: 0.0
- Iou Ship: 0.5194
- Iou Small-vehicle: 0.4368
- Iou Tennis-court: 0.0280
- Iou Helicopter: nan
- Iou Basketball-court: 0.0
- Iou Ground-track-field: 0.5492
- Iou Swimming-pool: nan
- Iou Harbor: 0.3611
- Iou Soccer-ball-field: 0.7592
- Iou Plane: nan
- Iou Storage-tank: 0.0
- Iou Baseball-diamond: nan
- Iou Large-vehicle: 0.3508
- Iou Bridge: 0.0
- Iou Roundabout: 0.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: polynomial
- training_steps: 1345
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Ship | Accuracy Small-vehicle | Accuracy Tennis-court | Accuracy Helicopter | Accuracy Basketball-court | Accuracy Ground-track-field | Accuracy Swimming-pool | Accuracy Harbor | Accuracy Soccer-ball-field | Accuracy Plane | Accuracy Storage-tank | Accuracy Baseball-diamond | Accuracy Large-vehicle | Accuracy Bridge | Accuracy Roundabout | Iou Background | Iou Ship | Iou Small-vehicle | Iou Tennis-court | Iou Helicopter | Iou Basketball-court | Iou Ground-track-field | Iou Swimming-pool | Iou Harbor | Iou Soccer-ball-field | Iou Plane | Iou Storage-tank | Iou Baseball-diamond | Iou Large-vehicle | Iou Bridge | Iou Roundabout |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1413 | 1.0 | 113 | 0.5054 | 0.0431 | 0.0841 | 0.0445 | nan | 0.0611 | 0.0179 | 0.0079 | nan | 0.0 | 0.0 | nan | 0.8374 | 0.0 | nan | 0.0 | nan | 0.0010 | 0.0 | 0.0 | 0.0 | 0.0592 | 0.0178 | 0.0079 | nan | 0.0 | 0.0 | nan | 0.4319 | 0.0 | nan | 0.0 | nan | 0.0010 | 0.0 | 0.0 |
0.326 | 2.0 | 226 | 0.3240 | 0.0756 | 0.1192 | 0.2144 | nan | 0.0433 | 0.1690 | 0.0 | nan | 0.0 | 0.0 | nan | 0.8062 | 0.0 | nan | 0.0 | nan | 0.2926 | 0.0 | 0.0 | 0.0 | 0.0430 | 0.1614 | 0.0 | nan | 0.0 | 0.0 | nan | 0.4129 | 0.0 | nan | 0.0 | nan | 0.2904 | 0.0 | 0.0 |
0.1849 | 3.0 | 339 | 0.2807 | 0.1589 | 0.2164 | 0.3238 | nan | 0.3520 | 0.3125 | 0.0 | nan | 0.0 | 0.3563 | nan | 0.6252 | 0.4509 | nan | 0.0 | nan | 0.2835 | 0.0 | 0.0 | 0.0 | 0.3236 | 0.2894 | 0.0 | nan | 0.0 | 0.3265 | 0.0 | 0.3954 | 0.4506 | nan | 0.0 | nan | 0.2807 | 0.0 | 0.0 |
0.1341 | 4.0 | 452 | 0.2694 | 0.1618 | 0.2309 | 0.3055 | nan | 0.2089 | 0.3628 | 0.0188 | nan | 0.0 | 0.4866 | nan | 0.7552 | 0.5206 | nan | 0.0 | nan | 0.1866 | 0.0 | 0.0 | 0.0 | 0.2004 | 0.3303 | 0.0188 | nan | 0.0 | 0.4268 | 0.0 | 0.4221 | 0.5205 | nan | 0.0 | nan | 0.1840 | 0.0 | 0.0 |
0.1282 | 5.0 | 565 | 0.2631 | 0.2057 | 0.2726 | 0.3396 | nan | 0.4061 | 0.3347 | 0.0292 | nan | 0.0 | 0.6126 | nan | 0.6152 | 0.8252 | nan | 0.0 | nan | 0.1751 | 0.0 | 0.0 | 0.0 | 0.3667 | 0.3169 | 0.0292 | nan | 0.0 | 0.4767 | nan | 0.3995 | 0.7049 | nan | 0.0 | nan | 0.1745 | 0.0 | 0.0 |
0.1138 | 6.0 | 678 | 0.2418 | 0.1949 | 0.2558 | 0.3865 | nan | 0.2362 | 0.3709 | 0.0122 | nan | 0.0 | 0.6128 | nan | 0.6627 | 0.5823 | nan | 0.0 | nan | 0.3365 | 0.0 | 0.0 | 0.0 | 0.2249 | 0.3444 | 0.0122 | nan | 0.0 | 0.4625 | nan | 0.3921 | 0.5725 | nan | 0.0 | nan | 0.3301 | 0.0 | 0.0 |
0.1049 | 7.0 | 791 | 0.2345 | 0.2013 | 0.2623 | 0.4725 | nan | 0.3186 | 0.4071 | 0.0827 | nan | 0.0 | 0.1697 | nan | 0.7809 | 0.6140 | nan | 0.0 | nan | 0.5118 | 0.0 | 0.0 | 0.0 | 0.2927 | 0.3851 | 0.0827 | nan | 0.0 | 0.1679 | nan | 0.4702 | 0.5212 | nan | 0.0 | nan | 0.4961 | 0.0 | 0.0 |
0.0829 | 8.0 | 904 | 0.2351 | 0.2194 | 0.2818 | 0.4348 | nan | 0.1689 | 0.4289 | 0.0980 | nan | 0.0 | 0.5547 | nan | 0.7050 | 0.7860 | nan | 0.0 | nan | 0.3580 | 0.0 | 0.0 | 0.0 | 0.1619 | 0.4048 | 0.0980 | nan | 0.0 | 0.5205 | nan | 0.3967 | 0.7023 | nan | 0.0 | nan | 0.3490 | 0.0 | 0.0 |
0.0922 | 9.0 | 1017 | 0.2350 | 0.2549 | 0.3103 | 0.5060 | nan | 0.4729 | 0.4726 | 0.0572 | nan | 0.0 | 0.5679 | nan | 0.5794 | 0.7942 | nan | 0.0 | nan | 0.4690 | 0.0 | 0.0 | 0.0 | 0.4143 | 0.4398 | 0.0572 | nan | 0.0 | 0.5293 | nan | 0.4010 | 0.7613 | nan | 0.0 | nan | 0.4563 | 0.0 | 0.0 |
0.0717 | 10.0 | 1130 | 0.2399 | 0.2344 | 0.2871 | 0.4150 | nan | 0.4512 | 0.4155 | 0.0169 | nan | 0.0 | 0.5706 | nan | 0.6279 | 0.7676 | nan | 0.0 | nan | 0.3089 | 0.0 | 0.0 | 0.0 | 0.3995 | 0.3949 | 0.0169 | nan | 0.0 | 0.5351 | nan | 0.4246 | 0.7393 | nan | 0.0 | nan | 0.3023 | 0.0 | 0.0 |
0.0787 | 11.0 | 1243 | 0.2228 | 0.2578 | 0.3105 | 0.4726 | nan | 0.6679 | 0.4378 | 0.0666 | nan | 0.0 | 0.5865 | nan | 0.4684 | 0.7796 | nan | 0.0 | nan | 0.4087 | 0.0 | 0.0 | 0.0 | 0.5359 | 0.4172 | 0.0666 | nan | 0.0 | 0.5456 | nan | 0.3785 | 0.7528 | nan | 0.0 | nan | 0.3975 | 0.0 | 0.0 |
0.0787 | 11.9 | 1345 | 0.2318 | 0.2504 | 0.3019 | 0.4542 | nan | 0.6330 | 0.4644 | 0.0280 | nan | 0.0 | 0.6010 | nan | 0.4575 | 0.7776 | nan | 0.0 | nan | 0.3594 | 0.0 | 0.0 | 0.0 | 0.5194 | 0.4368 | 0.0280 | nan | 0.0 | 0.5492 | nan | 0.3611 | 0.7592 | nan | 0.0 | nan | 0.3508 | 0.0 | 0.0 |
Framework versions
- Transformers 4.35.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1
- Downloads last month
- 4
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for giuseppemartino/model2
Base model
nvidia/mit-b2