gianlab's picture
pushing files to the repo from the example!
c41e65e verified
|
raw
history blame
11.6 kB
---
license: apache-2.0
library_name: sklearn
tags:
- sklearn
- skops
- tabular-classification
model_format: pickle
model_file: skops-iw9h_jza.pkl
widget:
- structuredData:
x0:
- 3
- 5
- 1
x1:
- 5
- 5
- 3
x10:
- 0
- 0
- 0
x11:
- 0
- 0
- 0
x12:
- 0
- 0
- 0
x13:
- 0
- 0
- 0
x14:
- 0
- 0
- 0
x15:
- 0
- 0
- 0
x16:
- 0
- 0
- 0
x2:
- 3
- 4
- 0
x3:
- 5
- 4
- 0
x4:
- 4
- 4
- 0
x5:
- 4
- 0
- 0
x6:
- 3
- 0
- 0
x7:
- 2
- 0
- 0
x8:
- 3
- 0
- 0
x9:
- 0
- 0
- 0
---
# Model description
This model was created following the instructions in the following Kaggle notebook:https://www.kaggle.com/code/thedankdel/disease-symptom-prediction-ml-99The possible classified diseases are:The possible symptoms are:
## Intended uses & limitations
This model follows the limitations of the Apache 2.0 license.
## Training Procedure
[More Information Needed]
### Hyperparameters
<details>
<summary> Click to expand </summary>
| Hyperparameter | Value |
|--------------------------|---------|
| bootstrap | True |
| ccp_alpha | 0.0 |
| class_weight | |
| criterion | gini |
| max_depth | 13 |
| max_features | sqrt |
| max_leaf_nodes | |
| max_samples | |
| min_impurity_decrease | 0.0 |
| min_samples_leaf | 1 |
| min_samples_split | 2 |
| min_weight_fraction_leaf | 0.0 |
| n_estimators | 500 |
| n_jobs | |
| oob_score | False |
| random_state | 42 |
| verbose | 0 |
| warm_start | False |
</details>
### Model Plot
<style>#sk-container-id-1 {color: black;}#sk-container-id-1 pre{padding: 0;}#sk-container-id-1 div.sk-toggleable {background-color: white;}#sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-1 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-1 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-1 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-1 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-1 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-1 div.sk-item {position: relative;z-index: 1;}#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-1 div.sk-item::before, #sk-container-id-1 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-1 div.sk-label-container {text-align: center;}#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-1 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-1" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>RandomForestClassifier(max_depth=13, n_estimators=500, random_state=42)</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-1" type="checkbox" checked><label for="sk-estimator-id-1" class="sk-toggleable__label sk-toggleable__label-arrow">RandomForestClassifier</label><div class="sk-toggleable__content"><pre>RandomForestClassifier(max_depth=13, n_estimators=500, random_state=42)</pre></div></div></div></div></div>
## Evaluation Results
| Metric | Value |
|----------|----------|
| accuracy | 0.995935 |
| f1 score | 0.995935 |
### Model description/Evaluation Results/Classification report
| index | precision | recall | f1-score | support |
|-----------------------------------------|-------------|----------|------------|-----------|
| (vertigo) Paroymsal Positional Vertigo | 1 | 1 | 1 | 18 |
| AIDS | 1 | 1 | 1 | 20 |
| Acne | 1 | 1 | 1 | 32 |
| Alcoholic hepatitis | 1 | 1 | 1 | 29 |
| Allergy | 1 | 0.947368 | 0.972973 | 19 |
| Arthritis | 1 | 1 | 1 | 31 |
| Bronchial Asthma | 1 | 1 | 1 | 28 |
| Cervical spondylosis | 0.9375 | 1 | 0.967742 | 30 |
| Chicken pox | 1 | 1 | 1 | 27 |
| Chronic cholestasis | 1 | 1 | 1 | 19 |
| Common Cold | 1 | 1 | 1 | 25 |
| Dengue | 1 | 1 | 1 | 22 |
| Diabetes | 1 | 1 | 1 | 23 |
| Dimorphic hemmorhoids(piles) | 1 | 1 | 1 | 30 |
| Drug Reaction | 1 | 1 | 1 | 21 |
| Fungal infection | 1 | 1 | 1 | 25 |
| GERD | 1 | 1 | 1 | 24 |
| Gastroenteritis | 1 | 0.95 | 0.974359 | 20 |
| Heart attack | 1 | 1 | 1 | 18 |
| Hepatitis B | 1 | 1 | 1 | 28 |
| Hepatitis C | 1 | 1 | 1 | 19 |
| Hepatitis D | 1 | 1 | 1 | 22 |
| Hepatitis E | 1 | 1 | 1 | 30 |
| Hypertension | 1 | 0.931034 | 0.964286 | 29 |
| Hyperthyroidism | 1 | 1 | 1 | 24 |
| Hypoglycemia | 1 | 1 | 1 | 27 |
| Hypothyroidism | 1 | 1 | 1 | 28 |
| Impetigo | 1 | 1 | 1 | 24 |
| Jaundice | 1 | 1 | 1 | 25 |
| Malaria | 1 | 1 | 1 | 26 |
| Migraine | 1 | 1 | 1 | 18 |
| Osteoarthristis | 1 | 1 | 1 | 20 |
| Paralysis (brain hemorrhage) | 0.904762 | 1 | 0.95 | 19 |
| Peptic ulcer diseae | 1 | 1 | 1 | 27 |
| Pneumonia | 1 | 1 | 1 | 21 |
| Psoriasis | 1 | 1 | 1 | 22 |
| Tuberculosis | 1 | 1 | 1 | 23 |
| Typhoid | 1 | 1 | 1 | 20 |
| Urinary tract infection | 1 | 1 | 1 | 24 |
| Varicose veins | 1 | 1 | 1 | 26 |
| hepatitis A | 1 | 1 | 1 | 21 |
| macro avg | 0.996153 | 0.995815 | 0.995838 | 984 |
| weighted avg | 0.996256 | 0.995935 | 0.995955 | 984 |
# How to Get Started with the Model
[More Information Needed]
# Model Card Authors
gianlab
# Model Card Contact
You can contact the model card authors through following channels:
[More Information Needed]
# Citation
**BibTeX**
```
@inproceedings{...,year={2020}}
```