Overview

Fine-tuned Llama-3 8B with an uncensored/unfiltered Wizard-Vicuna conversation dataset. Used QLoRA for fine-tuning.

The model here includes the fp32 HuggingFace version, plus a quantized 4-bit q4_0 gguf version.

Prompt style

The model was trained with the following prompt style:

### HUMAN:
Hello

### RESPONSE:
Hi, how are you?

### HUMAN:
I'm fine.

### RESPONSE:
How can I help you?
...

Training code

Code used to train the model is available here.

To reproduce the results:

git clone https://github.com/georgesung/llm_qlora
cd llm_qlora
pip install -r requirements.txt
python train.py configs/llama3_8b_chat_uncensored.yaml

Fine-tuning guide

https://georgesung.github.io/ai/qlora-ift/

Ollama inference

First, install Ollama. Based on instructions here, run the following:

cd $MODEL_DIR_OF_CHOICE
wget https://huggingface.co./georgesung/llama3_8b_chat_uncensored/resolve/main/llama3_8b_chat_uncensored_q4_0.gguf

Create a file called llama3-uncensored.modelfile with the following:

FROM ./llama3_8b_chat_uncensored_q4_0.gguf
TEMPLATE """{{ .System }}

### HUMAN:
{{ .Prompt }}

### RESPONSE:
"""
PARAMETER stop "### HUMAN:"
PARAMETER stop "### RESPONSE:"

Then run:

ollama create llama3-uncensored -f llama3-uncensored.modelfile
ollama run llama3-uncensored
Downloads last month
10,691
Safetensors
Model size
8.03B params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train georgesung/llama3_8b_chat_uncensored

Space using georgesung/llama3_8b_chat_uncensored 1