|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- conll2003 |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: deberta-base-finetuned-ner |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: conll2003 |
|
type: conll2003 |
|
args: conll2003 |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.9563020492186769 |
|
- name: Recall |
|
type: recall |
|
value: 0.9652436720816018 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9607520564042303 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9899205302077261 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# deberta-base-finetuned-ner |
|
|
|
This model is a fine-tuned version of [microsoft/deberta-base](https://huggingface.co./microsoft/deberta-base) on the conll2003 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0501 |
|
- Precision: 0.9563 |
|
- Recall: 0.9652 |
|
- F1: 0.9608 |
|
- Accuracy: 0.9899 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.1419 | 1.0 | 878 | 0.0628 | 0.9290 | 0.9288 | 0.9289 | 0.9835 | |
|
| 0.0379 | 2.0 | 1756 | 0.0466 | 0.9456 | 0.9567 | 0.9511 | 0.9878 | |
|
| 0.0176 | 3.0 | 2634 | 0.0473 | 0.9539 | 0.9575 | 0.9557 | 0.9890 | |
|
| 0.0098 | 4.0 | 3512 | 0.0468 | 0.9570 | 0.9635 | 0.9603 | 0.9896 | |
|
| 0.0043 | 5.0 | 4390 | 0.0501 | 0.9563 | 0.9652 | 0.9608 | 0.9899 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.11.3 |
|
- Pytorch 1.9.0+cu111 |
|
- Datasets 1.12.1 |
|
- Tokenizers 0.10.3 |
|
|