metadata-cls_15_10

This model is a fine-tuned version of vinai/phobert-base-v2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0128
  • Accuracy: 0.9967
  • F1: 0.9932

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.5273 1.0067 150 0.2313 0.9384 0.8468
0.2312 2.0134 300 0.1456 0.9581 0.9182
0.1542 3.0201 450 0.0944 0.9747 0.9471
0.1199 4.0268 600 0.0747 0.9810 0.9600
0.0943 5.0336 750 0.0640 0.9827 0.9608
0.0837 6.0403 900 0.0458 0.9894 0.9748
0.0645 7.0470 1050 0.0435 0.9894 0.9767
0.0509 8.0537 1200 0.0313 0.9925 0.9819
0.043 9.0604 1350 0.0242 0.9944 0.9859
0.0345 10.0671 1500 0.0196 0.9954 0.9904
0.03 11.0738 1650 0.0179 0.9956 0.9913
0.0231 12.0805 1800 0.0162 0.9958 0.9914
0.0227 13.0872 1950 0.0137 0.9966 0.9930
0.0181 14.0940 2100 0.0128 0.9967 0.9932

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.1.2
  • Datasets 2.20.0
  • Tokenizers 0.20.1
Downloads last month
1,296
Safetensors
Model size
135M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for gechim/metadata-cls_15_10

Finetuned
(200)
this model