|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: FacebookAI/xlm-roberta-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: metadata-cls-no-gov-8k-vnnic-xml |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# metadata-cls-no-gov-8k-vnnic-xml |
|
|
|
This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co./FacebookAI/xlm-roberta-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3308 |
|
- Accuracy: 0.9345 |
|
- F1: 0.7072 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |
|
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:| |
|
| No log | 0.5703 | 150 | 0.2151 | 0.9411 | 0.4945 | |
|
| 0.5567 | 1.1407 | 300 | 0.2789 | 0.9121 | 0.4579 | |
|
| 0.5567 | 1.7110 | 450 | 0.2676 | 0.9130 | 0.6930 | |
|
| 0.2703 | 2.2814 | 600 | 0.1926 | 0.9345 | 0.7071 | |
|
| 0.2703 | 2.8517 | 750 | 0.1984 | 0.9411 | 0.7390 | |
|
| 0.2055 | 3.4221 | 900 | 0.2503 | 0.9205 | 0.6689 | |
|
| 0.1573 | 3.9924 | 1050 | 0.1895 | 0.9476 | 0.7332 | |
|
| 0.1573 | 4.5627 | 1200 | 0.3001 | 0.9130 | 0.6974 | |
|
| 0.1287 | 5.1331 | 1350 | 0.1834 | 0.9495 | 0.7302 | |
|
| 0.1287 | 5.7034 | 1500 | 0.2586 | 0.9429 | 0.7345 | |
|
| 0.1022 | 6.2738 | 1650 | 0.3486 | 0.9261 | 0.7055 | |
|
| 0.1022 | 6.8441 | 1800 | 0.3064 | 0.9317 | 0.7053 | |
|
| 0.085 | 7.4144 | 1950 | 0.3445 | 0.9308 | 0.7086 | |
|
| 0.0689 | 7.9848 | 2100 | 0.3342 | 0.9336 | 0.7130 | |
|
| 0.0689 | 8.5551 | 2250 | 0.3272 | 0.9345 | 0.7074 | |
|
| 0.0525 | 9.1255 | 2400 | 0.3391 | 0.9345 | 0.7030 | |
|
| 0.0525 | 9.6958 | 2550 | 0.3308 | 0.9345 | 0.7072 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|