Edit model card

Visualize in Weights & Biases

GenZ-mental-health-toxic-content-classification

This model is a fine-tuned version of vinai/phobert-base-v2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7140
  • Accuracy: 0.8845
  • F1: 0.8107

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
No log 0.2558 200 0.3398 0.8632 0.7654
No log 0.5115 400 0.3330 0.8658 0.7819
No log 0.7673 600 0.3304 0.8685 0.7871
0.3689 1.0230 800 0.3288 0.8822 0.7915
0.3689 1.2788 1000 0.2896 0.8875 0.8109
0.3689 1.5345 1200 0.2941 0.8835 0.8066
0.3689 1.7903 1400 0.3224 0.8869 0.7996
0.2734 2.0460 1600 0.3352 0.8860 0.8117
0.2734 2.3018 1800 0.3062 0.8873 0.8087
0.2734 2.5575 2000 0.3012 0.8907 0.8145
0.2734 2.8133 2200 0.3162 0.8916 0.8209
0.2175 3.0691 2400 0.3426 0.8824 0.8142
0.2175 3.3248 2600 0.3486 0.8933 0.8166
0.2175 3.5806 2800 0.3456 0.8894 0.8094
0.2175 3.8363 3000 0.3608 0.8858 0.7894
0.1847 4.0921 3200 0.3744 0.8916 0.8152
0.1847 4.3478 3400 0.3742 0.8924 0.8175
0.1847 4.6036 3600 0.3562 0.8879 0.8166
0.1847 4.8593 3800 0.3520 0.8954 0.8250
0.1611 5.1151 4000 0.3796 0.8965 0.8222
0.1611 5.3708 4200 0.3885 0.8958 0.8244
0.1611 5.6266 4400 0.4188 0.8965 0.8236
0.1611 5.8824 4600 0.3859 0.8956 0.8245
0.1404 6.1381 4800 0.4465 0.8897 0.8193
0.1404 6.3939 5000 0.4301 0.8839 0.8098
0.1404 6.6496 5200 0.5168 0.8907 0.8077
0.1404 6.9054 5400 0.4282 0.8881 0.8192
0.1266 7.1611 5600 0.5377 0.8752 0.8052
0.1266 7.4169 5800 0.4084 0.8896 0.8173
0.1266 7.6726 6000 0.4738 0.8794 0.8083
0.1266 7.9284 6200 0.4398 0.8911 0.8091
0.1139 8.1841 6400 0.4880 0.8871 0.8101
0.1139 8.4399 6600 0.4627 0.8854 0.8133
0.1139 8.6957 6800 0.5389 0.8920 0.8183
0.1139 8.9514 7000 0.4516 0.8913 0.8162
0.1002 9.2072 7200 0.5754 0.8743 0.8027
0.1002 9.4629 7400 0.4753 0.8860 0.8166
0.1002 9.7187 7600 0.5003 0.8881 0.8169
0.1002 9.9744 7800 0.5249 0.8854 0.8143
0.0921 10.2302 8000 0.5939 0.8873 0.8072
0.0921 10.4859 8200 0.5433 0.8884 0.8173
0.0921 10.7417 8400 0.5743 0.8941 0.8208
0.0845 10.9974 8600 0.5587 0.8899 0.8198
0.0845 11.2532 8800 0.5924 0.8946 0.8208
0.0845 11.5090 9000 0.6260 0.8718 0.8007
0.0845 11.7647 9200 0.5436 0.8905 0.8167
0.077 12.0205 9400 0.6050 0.8877 0.8112
0.077 12.2762 9600 0.6252 0.8777 0.8048
0.077 12.5320 9800 0.6506 0.8860 0.8125
0.077 12.7877 10000 0.5702 0.8881 0.8119
0.0713 13.0435 10200 0.6322 0.8867 0.8131
0.0713 13.2992 10400 0.6369 0.8847 0.8104
0.0713 13.5550 10600 0.6706 0.8781 0.8074
0.0713 13.8107 10800 0.6144 0.8837 0.8119
0.0662 14.0665 11000 0.6653 0.8854 0.8108
0.0662 14.3223 11200 0.6518 0.8865 0.8122
0.0662 14.5780 11400 0.6472 0.8892 0.8113
0.0662 14.8338 11600 0.6291 0.8875 0.8140
0.059 15.0895 11800 0.6548 0.8848 0.8123
0.059 15.3453 12000 0.7052 0.8865 0.8126
0.059 15.6010 12200 0.6693 0.8841 0.8089
0.059 15.8568 12400 0.6709 0.8777 0.8062
0.0567 16.1125 12600 0.6860 0.8856 0.8135
0.0567 16.3683 12800 0.6951 0.8858 0.8143
0.0567 16.6240 13000 0.7039 0.8911 0.8176
0.0567 16.8798 13200 0.6621 0.8852 0.8128
0.0558 17.1355 13400 0.7282 0.8852 0.8075
0.0558 17.3913 13600 0.7321 0.8865 0.8118
0.0558 17.6471 13800 0.7157 0.8816 0.8088
0.0558 17.9028 14000 0.6853 0.8833 0.8105
0.0518 18.1586 14200 0.7342 0.8884 0.8127
0.0518 18.4143 14400 0.7116 0.8845 0.8116
0.0518 18.6701 14600 0.6901 0.8884 0.8153
0.0518 18.9258 14800 0.6871 0.8847 0.8122
0.0493 19.1816 15000 0.6919 0.8843 0.8123
0.0493 19.4373 15200 0.7121 0.8850 0.8124
0.0493 19.6931 15400 0.7161 0.8848 0.8114
0.0493 19.9488 15600 0.7140 0.8845 0.8107

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.1.2
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
23
Safetensors
Model size
135M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for gechim/GenZ-mental-health-toxic-content-classification

Finetuned
(182)
this model