t5-small-mlm-pubmed-35

This model is a fine-tuned version of t5-small on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1101
  • Rouge2 Precision: 0.4758
  • Rouge2 Recall: 0.3498
  • Rouge2 Fmeasure: 0.3927

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 40
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge2 Precision Rouge2 Recall Rouge2 Fmeasure
1.8404 0.75 500 1.5005 0.4265 0.2786 0.3273
1.6858 1.51 1000 1.4216 0.4318 0.2946 0.3404
1.6071 2.26 1500 1.3777 0.4472 0.3148 0.3598
1.5551 3.02 2000 1.3360 0.4406 0.3168 0.3586
1.5116 3.77 2500 1.3128 0.4523 0.3234 0.3671
1.4837 4.52 3000 1.2937 0.4477 0.3215 0.3645
1.4513 5.28 3500 1.2766 0.4511 0.3262 0.3689
1.4336 6.03 4000 1.2626 0.4548 0.3283 0.3718
1.4149 6.79 4500 1.2449 0.4495 0.3274 0.3687
1.3977 7.54 5000 1.2349 0.4507 0.3305 0.3712
1.3763 8.3 5500 1.2239 0.4519 0.3266 0.3688
1.371 9.05 6000 1.2171 0.4546 0.3305 0.3727
1.3501 9.8 6500 1.2080 0.4575 0.3329 0.3755
1.3443 10.56 7000 1.2017 0.4576 0.3314 0.3742
1.326 11.31 7500 1.1926 0.4578 0.333 0.3757
1.3231 12.07 8000 1.1866 0.4606 0.3357 0.3782
1.3089 12.82 8500 1.1816 0.4591 0.3338 0.3765
1.3007 13.57 9000 1.1764 0.4589 0.3361 0.3777
1.2943 14.33 9500 1.1717 0.4641 0.3382 0.3811
1.2854 15.08 10000 1.1655 0.4617 0.3378 0.38
1.2777 15.84 10500 1.1612 0.464 0.3401 0.3823
1.2684 16.59 11000 1.1581 0.4608 0.3367 0.3789
1.2612 17.35 11500 1.1554 0.4623 0.3402 0.3818
1.2625 18.1 12000 1.1497 0.4613 0.3381 0.3802
1.2529 18.85 12500 1.1465 0.4671 0.3419 0.3848
1.2461 19.61 13000 1.1431 0.4646 0.3399 0.3824
1.2415 20.36 13500 1.1419 0.4659 0.341 0.3835
1.2375 21.12 14000 1.1377 0.4693 0.3447 0.3873
1.2315 21.87 14500 1.1353 0.4672 0.3433 0.3855
1.2263 22.62 15000 1.1333 0.467 0.3433 0.3854
1.2214 23.38 15500 1.1305 0.4682 0.3446 0.3869
1.2202 24.13 16000 1.1291 0.4703 0.3465 0.3888
1.2155 24.89 16500 1.1270 0.472 0.348 0.3903
1.2064 25.64 17000 1.1261 0.4724 0.3479 0.3905
1.2173 26.4 17500 1.1236 0.4734 0.3485 0.3912
1.1994 27.15 18000 1.1220 0.4739 0.3486 0.3915
1.2018 27.9 18500 1.1217 0.4747 0.3489 0.3921
1.2045 28.66 19000 1.1194 0.4735 0.3488 0.3916
1.1949 29.41 19500 1.1182 0.4732 0.3484 0.3911
1.19 30.17 20000 1.1166 0.4724 0.3479 0.3904
1.1932 30.92 20500 1.1164 0.4753 0.3494 0.3924
1.1952 31.67 21000 1.1147 0.4733 0.3485 0.3911
1.1922 32.43 21500 1.1146 0.475 0.3494 0.3923
1.1889 33.18 22000 1.1132 0.4765 0.3499 0.3933
1.1836 33.94 22500 1.1131 0.4768 0.351 0.3939
1.191 34.69 23000 1.1127 0.4755 0.3495 0.3926
1.1811 35.44 23500 1.1113 0.4748 0.349 0.3919
1.1864 36.2 24000 1.1107 0.4751 0.3494 0.3921
1.1789 36.95 24500 1.1103 0.4756 0.3499 0.3927
1.1819 37.71 25000 1.1101 0.4758 0.35 0.3932
1.1862 38.46 25500 1.1099 0.4755 0.3497 0.3926
1.1764 39.22 26000 1.1101 0.4759 0.3498 0.3928
1.1819 39.97 26500 1.1101 0.4758 0.3498 0.3927

Framework versions

  • Transformers 4.12.5
  • Pytorch 1.10.0+cu111
  • Datasets 1.15.1
  • Tokenizers 0.10.3
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Collection including gayanin/t5-small-mlm-pubmed-35