|
--- |
|
datasets: |
|
- lewtun/music_genres_small |
|
base_model: |
|
- facebook/wav2vec2-large |
|
--- |
|
|
|
# My Music Genre Classification Model 🎶 |
|
This model classifies music genres based on audio signals. It was fine-tuned on the `music_genres_small` dataset using the Wav2Vec2 architecture. |
|
|
|
## Metrics |
|
- **Validation Accuracy**: 69% |
|
- **F1 Score**: 68% |
|
- **Validation Loss**: 1.03 |
|
|
|
## Usage |
|
```python |
|
from transformers import Wav2Vec2ForSequenceClassification, Wav2Vec2FeatureExtractor |
|
import torch |
|
|
|
# Load the model and feature extractor |
|
model = Wav2Vec2ForSequenceClassification.from_pretrained("username/repo-name") |
|
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("username/repo-name") |
|
|
|
# Prepare input |
|
audio = ... # Your audio array |
|
inputs = feature_extractor(audio, sampling_rate=16000, return_tensors="pt") |
|
|
|
# Make predictions |
|
logits = model(**inputs).logits |
|
predicted_class = torch.argmax(logits, dim=-1).item() |
|
print(predicted_class) |
|
|